Skip to main content
Log in

Infrared femtosecond laser ablation of graphite in high vacuum probed by optical emission spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report infrared, ultra-short (780 nm, 120 fs) laser ablation of graphite in high vacuum. The plume characteristics are analyzed by wavelength-, time-, and spatially resolved optical emission spectroscopy. A multi-component structure of the plume is observed as a function of time, space, and laser fluence: (i) line emission from electronically excited carbon neutrals and ions; (ii) luminescence from excited C3 radicals; (iii) broadband visible radiation, ascribed to black-body-like emission from larger carbon clusters. The analysis of the graphite plume optical emission indicates the existence of two different ablation regimes, with the emission of large graphite fragments at low fluences and carbon radicals and atoms at larger fluences, in agreement with the theoretical description of ultra-fast ablation of graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Davanloo, J.H. You, C.B. Collins: J. Mater. Sci. 10, 2548 (1995)

    Google Scholar 

  2. D.B. Geohegan, A.A. Puretzky: Mater. Res. Soc. Symp. Proc. 397, 55 (1996)

    Article  Google Scholar 

  3. S.E. Johnson, M.N.R. Ashfold, M.P. Knapper, R.J. Lade, K.N. Rosser, N.A. Fox, W.N. Wang: Diamond Relat. Mater. 6, 569 (1997)

    Article  ADS  Google Scholar 

  4. S. Acquaviva, E. D’Anna, M.L. De Giorgi, M. Fernandez, G. Leggieri, A. Luches, A. Zocco, G. Majni: Appl. Surf. Sci. 154, 369 (2000) and references therein

    Article  ADS  Google Scholar 

  5. H.C. Ong, R.P.H. Chang: Phys. Rev. B 55, 13213 (1997)

    Article  ADS  Google Scholar 

  6. Y. Yamagata, A. Sharma, J. Narayan, R.M. Mayo, J.W. Newman, K. Ebihara: J. Appl. Phys. 88, 6861 (2000)

    Article  ADS  Google Scholar 

  7. F. Claeyssens, R.J. Lade, K.N. Rosser, M.N.R. Ashfold: J. Appl. Phys. 89, 697 (2001)

    Article  ADS  Google Scholar 

  8. F. Qian, V. Craciun, R.K. Singh, S.D. Dutta, P.P. Pronko: J. Appl. Phys. 86, 2281 (1999)

    Article  ADS  Google Scholar 

  9. A.V. Rode, B. Luther-Davies, E.G. Gamaly: J. Appl. Phys. 85, 4222 (1999)

    Article  ADS  Google Scholar 

  10. S. Acquaviva, A. Perrone, A. Zocco, A. Klini, C. Fotakis: Thin Solid Films 373, 266 (2000)

    Article  ADS  Google Scholar 

  11. P.S. Banks, L. Dinh, B.C. Stuart, M.D. Feit, A.M. Komashko, A.M. Rubenchik, M.D. Perry, W. McLean: Appl. Phys. A 69, S347 (1999)

  12. F. Claeyssens, M.N.R. Ashfold, E. Sofoulakis, C.G. Ristoscu, D. Anglos, C. Fotakis: J. Appl. Phys. 91, 6162 (2002)

    Article  ADS  Google Scholar 

  13. A.-S. Loir, F. Garriele, J.-L. Subtil, F. Goutaland, M. Belin, R. Le Harzic, C. Donnet, Y. Ouerdane, F. Rogemond, P. Laporte: Appl. Surf. Sci. 208209, 553 (2003)

  14. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, X. Wang, C. Ferdeghini: Appl. Phys. Lett. 80, 4315 (2002)

    Article  ADS  Google Scholar 

  15. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, L. Lanotte: Appl. Phys. Lett. 84, 4502 (2004)

    Article  ADS  Google Scholar 

  16. W.C. Martin, J. Sugar, A. Musgrove, G.R. Dalton, W.L. Wiese, J.R. Fuhr, D.E. Kelleher: NIST Database for Atomic Spectroscopy (NIST, Gaithersburg, MD 1995)

  17. D.R. Lide: CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL 1993)

  18. G.V. Marr: Can. J. Phys. 35, 1275 (1957)

    Article  ADS  Google Scholar 

  19. P. Monchicourt: Phys. Rev. Lett. 66, 1430 (1991)

    Article  ADS  Google Scholar 

  20. A.A. Vostrikov, D.Yu. Dubov, A.A. Agarkov, S.V. Drozdov, V.A. Galichin: The radiative cooling of C60 and C60+ in a beam. In: Atomic and Molecular Beams – The State of the Art 2000, ed. by R. Campargue (Springer, Berlin 2000) p. 693

  21. T. Sasaki, T. Wakasaki, K. Kadota: Appl. Surf. Sci. 197198, 197 (2002)

  22. R. Mitzner, E.E.B. Campbell: J. Chem. Phys. 103, 2445 (1995)

    Article  ADS  Google Scholar 

  23. A.A. Vostrikov, D.Yu. Dubov, A.A. Agarkov: JETP Lett. 63, 963 (1996)

    Article  ADS  Google Scholar 

  24. D.H. Reitze, H. Ahn, M.C. Downer: Phys. Rev. B 45, 2677 (1992)

    Article  ADS  Google Scholar 

  25. H.O. Jeschke, M.E. Garcia, K.H. Benneman: Phys. Rev. Lett. 87, 015003 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amoruso.

Additional information

PACS

52.38.Mf; 79.20.Ds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amoruso, S., Ausanio, G., Vitiello, M. et al. Infrared femtosecond laser ablation of graphite in high vacuum probed by optical emission spectroscopy. Appl. Phys. A 81, 981–986 (2005). https://doi.org/10.1007/s00339-004-3059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3059-2

Keywords

Navigation