Skip to main content
Log in

Mode excitation induced by the scanning tunnelling microscope

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The scanning tunnelling microscope (STM) can induce molecular vibrations. This is detected by changes in the tunnelling conductance as the bias voltage matches a vibrational excitation threshold. Vibrational spectroscopy is available for a unique molecule. Nevertheless, the experimental results present several challenges: few modes are detected, certain symmetries are dominant, and site and conformation properties affect the detection. Despite these difficulties, this technique is proving to be of the uttermost importance in the analysis of molecular adsorbates and in their manipulation. We present a general theory that can predict the outcome of STM induced vibrational spectroscopy. The above challenges are analysed and quantitative results are then shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Wiesendanger, H.-J. Günterodt: Scanning tunnelling microscopy III, Springer series Surf. Sci., Berlin (1996)

  2. R. Berndt: Low-Temperature Scanning Tunnelling Spectroscopy in: “Structure and Dynamics of heterogeneous Systems”, P. Entel, D.E. Wolf, 116 (World Scientific 2000)

  3. W.D. Schneider, R. Berndt, J. Elec. Spectrosc. Relat. Phenom. 109, 19 (2000)

  4. D.M. Eigler, C.P. Lutz, W.E. Rudge: Nature 352, 600 (1991); L. Bartels, G. Meyer, K.-H. Rieder, D. Velic, E. Knoesel, A. Hotzel, M. Wolf, G. Ertl: Phys. Rev. Lett. 80, 2004 (1998); B.C. Stipe, M.A. Rezaei, W. Ho, S. Gao,M. Persson, B.I. Lundqvist: Phys. Rev. Lett. 78, 4410 (1997)

    Article  ADS  Google Scholar 

  5. B.C. Stipe, M.A. Rezaei, W. Ho: Sci. 279, 1907 (1998)

    Article  ADS  Google Scholar 

  6. P.K. Hansma: Phys. Reps. 30, 145 (1977)

    Article  ADS  Google Scholar 

  7. J.I. Pascual, J.J. Jackiw, Z. Song, P.S. Weiss, H. Conrad, H.-P. Rust: Phys. Rev. Lett. 86, 1050 (2001)

    Article  ADS  Google Scholar 

  8. Y. Kim, T. Komeda, M. Kawai: Phys. Rev. Lett. 89, 126104 (2002)

    Article  ADS  Google Scholar 

  9. F. Moresco, G. Meyer, K.H. Rieder: Mod. Phys. Lett. B 13, 709 (1999)

    Article  ADS  Google Scholar 

  10. H.J. Lee, W. Ho: Sci. 286, 1719 (1999)

    Article  Google Scholar 

  11. B.N.J. Persson, A. Baratoff: Phys. Rev. Lett. 59, 339 (1987)

    Article  ADS  Google Scholar 

  12. N. Mingo, K. Makoshi: Phys. Rev. Lett. 84, 3694 (2000)

    Article  ADS  Google Scholar 

  13. M.A. Gata, P.R. Antoniewicz: Phys. Rev. B 60, 8999 (1999)

    Article  ADS  Google Scholar 

  14. J.I. Pascual, N. Lorente, Z. Song, H. Conrad, H.P. Rust: Nature 423, 525 (2003)

    Article  ADS  Google Scholar 

  15. A. Zawadowski: Phys. Rev. 163, 341 (1967)

    Article  ADS  Google Scholar 

  16. J.A. Appelbaum, W.F. Brinkman: Phys. Rev. 186, 464 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  17. J.B. Pendry, A.B. Prêtre, B.C.H. Krutzen: J. Phys. Condens. Matter 3, 4313 (1991)

    Article  ADS  Google Scholar 

  18. J. Li, W.D. Schneider, R. Berndt, O. Bryant, S. Crampin: Phys. Rev. Lett. 81, 4464 (1998)

    Article  ADS  Google Scholar 

  19. N. Lorente, M. Persson: Phys. Rev. Lett. 85, 2997 (2000)

    Article  ADS  Google Scholar 

  20. J. Tersoff, D.R. Hamann: Phys. Rev. Lett. 50, 1998 (1983); J. Tersoff, D.R. Hamann: Phys. Rev. B. 31, 805 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  21. G.D. Mahan: Many-Particle Physics (Plenum Press, New York 1990)

  22. C. Caroli, R. Combescot, P. Nozières, D. Saint-James: J. Phys. C: Solid State Phys. 5, 21 (1972)

    Article  ADS  Google Scholar 

  23. T. Mii, S. Tikhodeev, H. Ueba: Surf. Sci. 502, 26 (2002)

    Article  ADS  Google Scholar 

  24. J.R. Hahn, H.J. Lee, W. Ho: Phys. Rev. Lett. 85, 1914 (2000)

    Article  ADS  Google Scholar 

  25. L.C. Davis: Phys. Rev. B 2, 1714 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Kirtley, D.J. Scalapino, P.K. Hansma: Phys. Rev. B 14, 3177 (1976)

    Article  ADS  Google Scholar 

  27. N. Lorente, M. Persson, L.J. Lauhon, W. Ho: Phys. Rev. Lett. 86, 2593 (2001)

    Article  ADS  Google Scholar 

  28. F.E. Olsson, M. Persson, N. Lorente, L.J. Lauhon, W. Ho: J. Phys. Chem. B 106, 8161 (2002)

    Article  Google Scholar 

  29. F.E. Olsson, N. Lorente, M. Persson: Surf. Sci. 522, L27 (2003)

  30. Dacapo is maintained by CAMP, DTU (Lyngby), download from: http://www.fysik.dtu.dk/CAMPOS

  31. K.J. Wu, S.D. Kevan: J. Chem. Phys. 94, 7494 (1991); T.J. Chuang, H. Seki, I. Hussla: Surf. Sci. 158, 525 (1985)

    Article  ADS  Google Scholar 

  32. L.J. Lauhon, W. Ho: J. Phys. Chem. A. 104, 2463 (2000); L.J. Lauhon, W. Ho: Surf. Sci 451, 219 (2000)

    Article  Google Scholar 

  33. N. Lorente, M. Hedouin, R.E. Palmer, M. Persson: Phys. Rev. B 68, 155401 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lorente.

Additional information

PACS

68.37.Ef; 63.22.+m; 68.35.Ja; 34.50.Ez

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorente, N. Mode excitation induced by the scanning tunnelling microscope. Appl. Phys. A 78, 799–806 (2004). https://doi.org/10.1007/s00339-003-2434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2434-8

Keywords

Navigation