Skip to main content
Log in

Thermal hysteresis of spin reorientation at Morin transition in alkoxide derived hematite nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present results on the structural and magnetic properties of highly crystalline α-Fe2O3 nanoparticles of average size ∼200 nm, synthesized from a novel sol-gel method using metal alkoxide precursor. These particles are multi-domain, showing the weak ferromagnetic–antiferromagnetic (WF-AF) transition (i.e., the Morin transition) at TM=256(2) K. Mössbauer measurements revealed a jump in hyperfine parameters (HP’s) at T∼TM, which also displays thermal hysteresis upon cooling or heating the sample. The analysis of HP’s as a function of temperature allowed us to discard temperature gradients as well as the coexistence of WF/AF phases as possible origins of this hysteretic behaviour. Instead, the hysteresis can be qualitatively explained by the small size and high-crystallinity of the particles, which hinder the nucleation of the WF or AF phases yielding metastable states beyond TM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mathur, H. Shen, N. Lecerf, H. Fjellvåg, G.F. Goya: Adv. Mater. 14, 1405 (2002)

    Google Scholar 

  2. S. Mathur: In: Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies, Y. Pauleau, (NATO ASI – Kaunas 2001, Kluwer Academic Publ. 91, 2002)

  3. J.S. Miller: Adv. Mater. 14, 1105 (2002)

    Google Scholar 

  4. V.S. Arunachalam, E.L. Fleischer: MRS Bulletin 26, 1020 (2001)

    Google Scholar 

  5. S. Mathur, M. Veith, H. Shen, S. Huefner, M.H. Jilavi: Chem. Mater. 14, 568 (2002)

    Google Scholar 

  6. S. Mathur, M. Veith, M. Haas, R. Haberkorn, H.P. Beck, H. Shen, S. Huefner: J. Am. Ceram. Soc. 84, 1921 (2001)

    Google Scholar 

  7. F.J. Morin: Phys. Rev. 78, 819 (1950)

    Google Scholar 

  8. I. Dzyaloshinsky: J. Phys. Chem. Solids 4, 241 (1958)

    Article  Google Scholar 

  9. T. Moriya: Phys. Rev. 120, 91 (1960)

    Article  Google Scholar 

  10. S. Mathur, M. Veith, V. Sivakov, H. Shen, H.B. Gao: J. Phys. IV 11, 487 (2001)

    Google Scholar 

  11. S. Mathur, M. Veith, V. Sivakov, H. Shen, U. Hartmann, H.B. Gao: Chem. Vapor. Depos. 8, 277 (2002)

    Google Scholar 

  12. D.H. Anderson: Phys. Rev. 151, 247 (1966).

    Google Scholar 

  13. A.H. Morrish: In: Canted antiferromagnetism: Hematite (World Sci. Pub. Co., Singapore, 1994)

  14. R.D. Zysler, M. Vasquez-Mansilla, C. Arciprete, M. Dimitrijewits, D. Rodriguez-Sierra, C. Saragovi: Physica B 224, 39 (2001)

    Google Scholar 

  15. H. Chow, F. Keffer: Phys. Rev. B 10, 243 (1974)

    Google Scholar 

  16. N.N. Greenwood, T.C. Gibb: Mössbauer Spectroscopy (Chapman Hall, London, 1971)

  17. F. van der Woude: Phys. Stat. Sol. 17, 417 (1966)

    Google Scholar 

  18. G.K. Chepurnykh: Sov. Phys. Solid. State 17, 1543 (1975)

    Google Scholar 

  19. K.B. Vlasov, E.A. Rozenberg, V.I. Timoshchuk, Ya.G. Smorodinskii: Sov. Phys. Solid. State 28, 1851 (1986)

    Google Scholar 

  20. D.L. Williamson, E.L. Venturini, R.A. Graham, B. Morosin: Phys. Rev. B 34, 1899 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.F. Goya.

Additional information

PACS

75.50.Tt; 76.80.+y; 75.50.Ee

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goya, G., Veith, M., Rapalavicuite, R. et al. Thermal hysteresis of spin reorientation at Morin transition in alkoxide derived hematite nanoparticles. Appl. Phys. A 80, 1523–1526 (2005). https://doi.org/10.1007/s00339-003-2381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2381-4

Keywords

Navigation