Skip to main content
Log in

Synthesis and thermal stability of gold nanowires within monolithic mesoporous silica

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper describes the preparation, by a novel and simple method, and the thermal stability of gold nanowires within monolithic mesoporous silica, involving soaking monolithic mesoporous silica in HAuCl4 aqueous solution, followed by drying and subsequent step-annealing. It has been shown that reduction of Au3+ within silica pores can occur during the drying process at 80 °C without any special reduction treatment. After initial annealing at 300 °C, Au nanowires are formed within the pores and are stable at temperatures up to 500 °C. Increasing the annealing temperature leads to a wire-to-rod-to-sphere morphological transformation of the Au nanowires. The surface-mediated reducing groups (-OH) on the silica pore are responsible for the low-temperature reduction of Au3+ ions, and the formation of Au nanowires is attributed to the uni-directional diffusion of Au atoms and the confinement of the pore channels. Spheroidization and breaking at some defects in the Au nanowires during annealing at elevated temperature result in the wire-to-rod-to-sphere transformation, accompanied by a blue-shift of the surface plasmon resonance over a very wide region in the optical spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Gülserenm, F. Ercolessi, E. Tosatti: Phys. Rev. B 51, 7377 (1995)

    Article  ADS  Google Scholar 

  2. T. Wenzel, J. Bosbach, F. Stietz, F. Träger: Surf. Sci. 432, 257 (1999)

    Article  ADS  Google Scholar 

  3. T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, F. Träger: Appl. Phys. B 69, 513 (1999)

    Article  ADS  Google Scholar 

  4. F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, F. Träger: Phys. Rev. Lett. 84, 5644 (2000)

    Article  ADS  Google Scholar 

  5. M.C. Wanke, O. Lehmann, K. Müller, Q. Wen, M. Stuke: Science 275, 1284 (1997)

    Article  Google Scholar 

  6. J.D. Joannopoulos, P.R. Villeneuve, S. Fan: Nature 386, 143 (1997)

    Article  ADS  Google Scholar 

  7. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin: Science 277, 1078 (1997)

    Article  Google Scholar 

  8. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos: Science 281, 2013 (1998)

    Article  ADS  Google Scholar 

  9. N.R. Jana, L. Gearheart, C.J. Murphy: J. Phys. Chem. B 105, 4065 (2001)

    Article  Google Scholar 

  10. B. Nikoobakht, Z.L. Wang, M.A. El-Sayed: J. Phys. Chem. B 104, 8635 (2000)

    Article  Google Scholar 

  11. S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed: J. Phys. Chem. B 104, 6152 (2000)

    Article  Google Scholar 

  12. N.R. Jana, L. Gearheart, C.J. Murphy: Adv. Mater. 13, 1389 (2001)

    Article  Google Scholar 

  13. H. Ohnishi, Y. Kondo, K. Takayanagi: Nature 395, 780 (1998)

    Article  ADS  Google Scholar 

  14. Y. Kondo, K. Takayanagi: Science 289, 606 (2000)

    Article  ADS  Google Scholar 

  15. Y. Kondo, K. Takayanagi: Phys. Rev. Lett. 79, 3455 (1997)

    Article  ADS  Google Scholar 

  16. S. Fullam, D. Cottell, H. Rensmo, D. Fitzmaurice: Adv. Mater. 12, 1430 (2000)

    Article  Google Scholar 

  17. T.O. Hutchinson, Y.P. Liu, C. Kiely, C.J. Kiely, M. Brust: Adv. Mater. 13, 1800 (2001)

    Article  Google Scholar 

  18. X.Y. Zhang, L.D. Zhang, W. Chen, G.W. Meng, M.J. Zheng, L.X. Zhao: Chem. Mater. 13, 2511 (2001)

    Article  Google Scholar 

  19. C.J. Murphy, N.R. Jana: Adv. Mater. 14, 80 (2002)

    Article  Google Scholar 

  20. N.R. Jana, L. Gearheart, C.J. Murphy: J. Phys. Chem. B 105, 4065 (2001)

    Article  Google Scholar 

  21. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky: Science 279, 548 (1998)

    Article  ADS  Google Scholar 

  22. Y.J. Han, J.M. Kim, G.D. Stucky: Chem. Mater. 12, 2068 (2000)

    Article  Google Scholar 

  23. K.B. Lee, S.M. Lee, J. Cheon: Adv. Mater. 13, 517 (2001)

    Article  Google Scholar 

  24. H.K. Kang, Y. Jun, J.I. Park, K.B. Lee, J. Cheon: Chem. Mater. 12, 3530 (2000)

    Article  Google Scholar 

  25. W.P. Cai, L.D. Zhang: J. Phys.: Condens. Matter 9, 7257 (1997)

    Google Scholar 

  26. W.P. Cai, H. Hofmeister, T. Rainer, W. Chen: J. Nanopart. Res. 3, 443 (2001)

    Article  Google Scholar 

  27. H.Z. Shi, L.D. Zhang, W.P. Cai: J. Appl. Phys. 87, 1572 (2000)

    Article  ADS  Google Scholar 

  28. P. Claus, H. Hofmeister: J. Phys. Chem. B 103, 2766 (1999)

    Article  Google Scholar 

  29. Y. Hosoya, T. Suga, T. Yanagawa, Y. Kurokawa: J. Appl. Phys. 81, 1475 (1997)

    Article  ADS  Google Scholar 

  30. S.C. Chen, C.Y. Tang, Z.D. Yu: Important Inorganic Chemical Reactions (Science & Technology Press, Shanghai 1994)

  31. C. Suryanarayana: Int. Mater. Rev. 40, 41 (1995)

    Article  Google Scholar 

  32. A.P. Legrand: The Surface Properties of Silicas (Wiley, New York 1998)

  33. H. Kang, Y.W. Jun, J. Park, K.B. Lee, J. Cheon: Chem. Mater. 12, 3530 (2000)

    Article  Google Scholar 

  34. T. Soejima, H. Tada, T. Kawahara, S. Ito: Langmuir 18, 4191 (2002)

    Article  Google Scholar 

  35. H. Hofmeister, P.T. Miclea, W. Mörke: Part. Syst. Charact. 19, 359 (2002)

    Article  Google Scholar 

  36. J.D. Verhoeven: Fundamentals of Physical Metallurgy (Wiley, New York 1975)

  37. E.A. Wovchko, J.C. Camp, J.A. Glass, J.T. Yates: Langmuir 11, 2592 (1995)

    Article  Google Scholar 

  38. H.J. Bi, W.P. Cai, H.Z. Shi, X .Liu: Chem. Phys. Lett. 357, 249 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.P. Cai.

Additional information

PACS

81.07.-b; 81.40.-z; 81.05.Rm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kan, C., Cai, W., Fu, G. et al. Synthesis and thermal stability of gold nanowires within monolithic mesoporous silica. Appl. Phys. A 78, 1187–1191 (2004). https://doi.org/10.1007/s00339-003-2202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2202-9

Keywords

Navigation