Skip to main content
Log in

Feeding biology of a habitat-forming antipatharian in the Azores Archipelago

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Benthic suspension feeders have developed a variety of feeding strategies and food availability has often proven to be a key factor explaining their occurrence and distribution. The feeding biology of coral species has been the target of an increasing number of studies, however most of them focus on Scleractinia and Octocorallia, while information for Antipatharia is very scarce. The present study focused on Antipathella wollastoni, a common habitat-forming antipatharian in the Azores Archipelago, forming dense black coral forests between 20 and 150 m. The objective of the study was to investigate the food preferences of the target species upon availability of different isotopically enriched food substrates and determine its ability to capture zooplankton prey under different flow speeds. The species was able to utilize different food sources including live phytoplankton, live zooplankton and dissolved organic matter (DOM), indicating the ability to exploit seasonally available food sources. However, ingestion of zooplankton enhanced carbon (C) and nitrogen (N) incorporation in coral tissue and metabolic activity, highlighting the importance of zooplankton prey for vital physiological processes such as growth and reproduction. Maximum zooplankton capture rates occurred under 4 cm−1, however the species displayed high capacity to capture zooplankton prey over different flow rates highlighting the ability of A. wollastoni to exploit high quantities of shortly available prey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Bo M, Bavestrello G (2019) Mediterranean black coral communities. In: Orejas C, Jiménez C (eds) Mediterranean cold-water corals: past, present and future. Springer, Cham, pp 249–251

    Google Scholar 

  • Bo M, Canese S, Bavestrello G (2014) Discovering Mediterranean black coral forests: Parantipathes larix (Anthozoa: Hexacorallia) in the Tuscan Archipelago, Italy. Ital J Zool 81:112–125

    Google Scholar 

  • Bo M, Canese S, Spaggiari C, Pusceddu A, Bertolino M, Angiolillo M, Giusti M, Loreto MF, Salvati E, Greco S, Bavestrello G (2012) Deep coral oases in the South Tyrrhenian Sea. PLoS One 7:e49870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brito A, Ocaña O (2004) Corales de las Islas Canarias: antozoos con esqueleto de los fondos litorales y profundos

  • Buhl-Mortensen L, Buhl-Mortensen P, Rungruangsak-Torrissen K, Schwach V, Hjort J, Jakobsen T, Ozhigin VK, Bergh Ø, Hamre J, Torgersen T, Toresen R (2018) Cold temperate coral habitats. Corals in a Changing World, p 9

  • Carlier A, Le Guilloux E, Olu K, Sarrazin J, Mastrototaro F, Taviani M, Clavier J (2009) Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar Ecol Prog Ser 397:125–137

    CAS  Google Scholar 

  • Carmo V, Santos M, Menezes GM, Loureiro CM, Lambardi P, Martins A (2013) Variability of zooplankton communities at Condor seamount and surrounding areas, Azores (NE Atlantic). Deep Sea Res Part II Top Stud Oceanogr 98:63–74

    Google Scholar 

  • Clegg SL, Whitfield M (1990) A generalized model for the scavenging of trace metals in the open ocean—I. Particle cycling. Deep Sea Res Part A Oceanogr Res Pap 37:809–832

    CAS  Google Scholar 

  • Coma R, Ribes M (2003) Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101:205–215

    Google Scholar 

  • Coma R, Ribes M, Gili J-M, Zabala M (2000) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15:448–453

    CAS  PubMed  Google Scholar 

  • Coppari M, Ferrier-Pagès C, Castellano M, Massa F, Olivari E, Bavestrello G, Povero P, Bo M (2020) Seasonal variation of the stable C and N isotopic composition of the mesophotic black coral Antipathella subpinnata (Ellis & Solander, 1786). Estuar Coast Shelf Sci 5(233):106520

    Google Scholar 

  • Crawley M (2007) The R book. West Sussex, England

    Google Scholar 

  • Cripps G, Lindeque P, Flynn KJ (2014) Have we been underestimating the effects of ocean acidification in zooplankton? Glob Change Biol 20:3377–3385

    Google Scholar 

  • EMODnet Bathymetry Consortium (2018): EMODnet Digital Bathymetry (DTM). http://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22(3):229–240

    Google Scholar 

  • Gaino E, Bavestrello G, Boyer M, Scoccia F, Bo M (2013) Biological and ecological relevance of black corals (Antipatharia) in the benthic environment. In: Liñán-Cabello MA (ed) Corals: classification, habitat and ecological significance. NOVA Science Publishers, New York, pp 37–74

    Google Scholar 

  • Goenaga C (1977) Two new species of Stichopathes (Zoantharia; Antipatharia) with observations on aspects of their biology. University of Puerto Rico, San Juan

    Google Scholar 

  • Goldberg WM, Grange KR, Taylor GT, Zuniga AL (1990) The structure of sweeper tentacles in the black coral Antipathes fiordensis. Biol Bull 179:96–104

    CAS  PubMed  Google Scholar 

  • Goldberg WM, Hopkins TL, Holl SM, Schaefer J, Kramer KJ, Morgan TD, Kim K (1994) Chemical composition of the sclerotized black coral skeleton (Coelenterata: Antipatharia): a comparison of two species. Comp Biochem Physiol Part B Comp Biochem 107:633–643

    Google Scholar 

  • Gori A, Ferrier-Pagès C, Hennige SJ, Murray F, Rottier C, Wicks LC, Roberts JM (2016) Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ 4:e1606

    PubMed  PubMed Central  Google Scholar 

  • Grigg RW (1965) Ecological studies of black coral in Hawaii. Pac Sci 19(2):244–260

    Google Scholar 

  • Hennige SJ, Wicks LC, Kamenos NA, Perna G, Findlay HS, Roberts JM (2014) Hidden impacts of ocean acidification to live and dead coral framework. Proc R Soc B Biol Sci 282:20150990

    Google Scholar 

  • Huguet C (2017) Seston quality and available food: importance in the benthic biogeochemical cycles. Marine animal forests. Springer, Cham, pp 733–759

    Google Scholar 

  • Ingrassia M, Macelloni L, Bosman A, Chiocci FL, Cerrano C, Martorelli E (2016) Black coral (Anthozoa, Antipatharia) forest near the western Pontine Islands (Tyrrhenian Sea). Mar Biodivers 46:285–290

    Google Scholar 

  • Lazzari P, Solidoro C, Ibello V, Salon S, Teruzzi A, Béranger K, Colella S, Crise A (2012) Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach. Biogeosciences 9(1):1965–1985

    Google Scholar 

  • Lewis J (1978) Feeding mechanisms in black corals (Antipatharia). J Zool Lond 186:393–396

    Google Scholar 

  • Lin M, Liao C, Dai C (2002) Modeling the effects of satiation on the feeding rate of a colonial suspension feeder, Acanthogorgia vegae, in a circulating system under lab conditions. Zool Stud 41:355–365

    Google Scholar 

  • Maier SR, Kutti T, Bannister RJ, van Breugel P, van Rijswijk P, van Oevelen D (2019) Survival under conditions of variable food availability: resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol Oceanogr 64:1651–1671

    CAS  Google Scholar 

  • Massi D, Vitale S, Titone A, Milisenda G, Gristina M, Fiorentino F (2018) Spatial distribution of the black coral Leiopathes glaberrima (Esper, 1788) (Antipatharia: Leiopathidae) in the Mediterranean: a prerequisite for protection of Vulnerable Marine Ecosystems (VMEs). Eur Zool J 85:169–178

    Google Scholar 

  • Montgomery AD, Crow GL (1998) Collection and husbrandry techniques for black coral at the Waikiki Aquarium, pp 103–108

  • Naumann MS, Orejas C, Wild C, Ferrier-Pagès C (2011) First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J Exp Biol 214:3570–3576

    CAS  PubMed  Google Scholar 

  • Nowak D, Florek M, Nowak J, Kwiatek W, Lekki J, Chevallier P, Hacura A, Wrzalik R, Ben-Nissan B, Van Grieken R, Kuczumow A (2009) Morphology and the chemical make-up of the inorganic components of black corals. Mater Sci Eng C 29:1029–1038

    CAS  Google Scholar 

  • Orejas C, Gili J, Arntz W (2003) The role of the small planktonic communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar Ecol Prog Ser 250:105–116

    Google Scholar 

  • Orejas C, Gori A, Rad-Menéndez C, Last KS, Davies AJ, Beveridge CM, Sadd D, Kiriakoulakis K, Witte U, Roberts JM (2016) The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J Exp Mar Biol Ecol 481:34–40

    Google Scholar 

  • Orejas C, Jiménez C (2017) The builders of the oceans—part I: coral architecture from the tropics to the poles, from the shallow to the deep. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. Springer, Cham

    Google Scholar 

  • Orejas C, Taviani M, Ambroso S, Andreou V, Bilan M, Bo M, Brooke S, Buhl-Mortensen P, Cordes E, Dominguez-Carrió C, Ferrier-Pagès C, Godinho A, Gori A, Grinyó J, Gutiérrez-Zárate C, Hennige S, Jiménez C, Larsson AI, Lartaud F, Lunden J, Maier C, Maier SR, Movilla J, Murray F, Peru E, Purser A, Rakka M, Reynaud S, Roberts JM, Siles P, Strömberg SM, Thomsen L, van Oevelen D, Veiga A, Carreiro-Silva M (2019) Cold-water coral in aquaria: advances and challenges. A focus on the mediterranean. Springer, Cham, pp 435–471

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2019) nlme: Linear and Nonlinear mixed effects models. R package version 3.1-140

  • Purser A, Larsson AI, Thomsen L, van Oevelen D (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J Exp Mar Biol Ecol 395:55–62

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rakka M, Orejas C, Sampaio I, Monteiro J, Parra H, Carreiro-Silva M (2017) Reproductive biology of the black coral Antipathella wollastoni (Cnidaria: Antipatharia) in the Azores (NE Atlantic). Deep Sea Res Part II Top Stud Oceanogr 145:131–141

    Google Scholar 

  • Ribes M, Coma R, Rossi S (2003) Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar Ecol Prog Ser 254:141–150

    CAS  Google Scholar 

  • Ribes M, Coma R, Gili JM (1999) Heterogeneous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar Ecol Prog Ser 183:125–137

    Google Scholar 

  • Riisgård HU, Larsen PS (2015) Filter-feeding zoobenthos and hydrodynamics. Marine animal forests. Springer, Cham, pp 1–25

    Google Scholar 

  • Rossi S, Gili JM, Coma R, Linares C, Gori A, Vert N (2006) Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): evidence for summer-autumn feeding constraints. Mar Biol 149:643–651

    CAS  Google Scholar 

  • Rossi S, Bramanti L, Gori A, Orejas C (2017) An overview of the animal forests of the world. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. Springer, Cham

    Google Scholar 

  • Rossoll D, Bermúdez R, Hauss H, Schulz KG, Riebesell U, Sommer U, Winder M (2012) Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS One 7:e34737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos M, Moita MT, Bashmachnikov I, Menezes GM, Carmo V, Loureiro CM, Mendonça A, Silva AF, Martins A (2013) Phytoplankton variability and oceanographic conditions at Condor seamount, Azores (NE Atlantic). Deep Sea Res Part II Top Stud Oceanogr 98:52–62

    Google Scholar 

  • Sarmiento J, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211:1–28

    Google Scholar 

  • Sebens K, Sarà G, Nishizaki M (2017) Energetics, particle capture, and growth dynamics of benthic suspension feeders. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests. Springer, Cham, pp 813–854

    Google Scholar 

  • Sherwood OA, Jamieson RE, Edinger EN, Wareham VE (2008) Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: examination of trophic, depth and spatial effects. Deep Sea Res Part I Oceanogr Res Pap 55(10):1392–1402

    CAS  Google Scholar 

  • Shimeta J, Koehl MAR (1997) Mechanisms of particle selection by tentaculate suspension feeders during encounter, retention, and handling. J Exp Mar Biol Ecol 209:47–73

    Google Scholar 

  • Silva A, Brotas V, Valente A, Sá C, Diniz T, Patarra RF, Álvaro NV, Neto AI (2013) Coccolithophore species as indicators of surface oceanographic conditions in the vicinity of Azores islands. Estuar Coast Shelf Sci 118:50–59

    CAS  Google Scholar 

  • Spalding MD, Green EP, Ravilious C (2001) World atlas of coral reefs. University of California Press, Berkeley

    Google Scholar 

  • Tazioli S, Bo M, Boyer M, Rotinsulu H, Bavestrello G (2007) Ecological observations of some common antipatharian corals in the marine park of Bunaken (North Sulawesi, Indonesia). Zool Stud 46:227–241

    Google Scholar 

  • Terrana L, Lepoint G, Eeckhaut I (2019) Assessing trophic relationships between shallow-water black corals (Antipatharia) and their symbionts using stable isotopes. Belgian J Zool 149(1):107–121

    Google Scholar 

  • Wagner D, Luck DG, Toonen RJ (2012) The biology and ecology of black corals (Cnidaria: Anthozoa: Hexacorallia: Antipatharia). Adv Mar Biol 63:67–132

    PubMed  Google Scholar 

  • Williams B, Grottoli AG (2010) Stable nitrogen and carbon isotope (δ15 N and δ13C) variability in shallow tropical Pacific soft coral and black coral taxa and implications for paleoceanographic reconstructions. Geochim Cosmochim Acta 74:5280–5288

    CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Google Scholar 

Download references

Acknowledgements

This study was supported by the European Union’s Horizon 2020 research and innovation program, under the ATLAS project (Grant Agreement No. 678760). This output reflects only the author’s view, and the European Union cannot be held responsible for any use that may be made of the information contained therein. MR is funded by a DRCT PhD grant (reference M3.1.a/F/047/2015.), and DvO is partially supported by VIDI grant 864.13.007 (NWO, the Netherlands). We are grateful to Gerald Hechter Taranto and David Figueras for their help with sampling and Peter van Breugel for sample analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rakka.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Topic Editor Mark R. Patterson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (TIFF 6351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakka, M., Orejas, C., Maier, S.R. et al. Feeding biology of a habitat-forming antipatharian in the Azores Archipelago. Coral Reefs 39, 1469–1482 (2020). https://doi.org/10.1007/s00338-020-01980-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-020-01980-0

Keywords

Navigation