Skip to main content

Advertisement

Log in

Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Climate change threatens the survival of scleractinian coral from exposure to concurrent ocean warming, acidification and deoxygenation; how corals can potentially adapt to this trio of stressors is currently unknown. This study investigates three coral species (Acropora muricata, Acropora pulchra and Porites lutea) dominant in an extreme mangrove lagoon (Bouraké, New Caledonia) where abiotic conditions exceed those predicted for many reef sites over the next 100 years under climate change and compared them to conspecifics from an environmentally more benign reef habitat. We studied holobiont physiology as well as plasticity in coral-associated microorganisms (Symbiodiniaceae and bacteria) through ITS2 and 16S rRNA sequencing, respectively. We hypothesised that differences in coral-associated microorganisms (Symbiodiniaceae and bacteria) between the lagoonal and adjacent reef habitats may support coral host productivity and ultimately the ability of corals to live in extreme environments. In the lagoon, all coral species exhibited  a metabolic adjustment of reduced photosynthesis-to-respiration ratios (P/R), but this was accompanied by highly divergent coral host-specific microbial associations. This was substantiated by the absence of shared ITS2-type profiles (proxies for Symbiodiniaceae genotypes). We observed that ITS2 profiles originating from Durusdinium taxa made up < 3% and a novel Symbiodinium ITS2 profile A1-A1v associated with A. pulchra. Bacterial community profiles were also highly divergent in  corals from the lagoonal environment, whereas corals from the reef site were consistently dominated by Hahellaceae, Endozoicomonas. As such, differences in host–microorganism associations aligned with different physiologies and habitats. Our results argue that a multitude of host–microorganism associations are required to fulfill the changing nutritional demands of corals persisting into environments that parallel climate change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this published article [and its supplementary information files]. All raw sequence data are accessible under NCBI’s BioProject (ID ITS2: PRJNA510616 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA510616, 16S rRNA: PRJNA510614 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA510614).

References

  • Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PloS one 3(7):e2836

    PubMed  PubMed Central  Google Scholar 

  • Apprill A, Robbins J, Eren AM, Pack AA, Reveillaud J, Mattila D, Moore M, Niemeyer M, Moore KM, Mincer TJ (2014) Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals? PLoS One 9(3):e90785

    PubMed  PubMed Central  Google Scholar 

  • Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol 23(17):4418–4433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badhai J, Ghosh TS, Das SK (2016) Composition and functional characterization of microbiome associated with mucus of the coral Fungia echinata collected from Andaman Sea. Front Microbio 7:936

    Google Scholar 

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Ann Rev Ecol Evol Syst Syst. 40:551–571

    Google Scholar 

  • Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ, Fraune S, Hentschel U, Hirt H, Hülter N, Lachnit T, Picazo D, Pita L, Pogoreutz C, Rädecker N, Saad MM, Schmitz RA, Schulenburg H, Voolstra CR, Weiland-Bräuer N, Ziegler M, Bosch TCG (2018) Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127:1–19

    PubMed  Google Scholar 

  • Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720

    CAS  PubMed  Google Scholar 

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci USA 110:1387–1392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, Hughen K, Apprill A, Voolstra CR (2013) The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. App Environ Microbio 79:4759–4762

    CAS  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc B 273:2305–2312

    PubMed  PubMed Central  Google Scholar 

  • Bourne DG (2005) Microbiological assessment of a disease outbreak on corals from Magnetic Island (Great Barrier Reef, Australia). Coral Reefs 24:304–312

    Google Scholar 

  • Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2:350–363

    CAS  PubMed  Google Scholar 

  • Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Ann Rev Microbio 8:317–340

    Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC bioinformatics 10(1):421

    PubMed  PubMed Central  Google Scholar 

  • Camp EF, Smith DJ, Evenhuis C, Enochs I, Manzello D, Woodcock S, Suggett DJ (2016) Acclimatization to high-variance habitats does not enhance physiological tolerance of two key Caribbean corals to future temperature and pH. Proc R Soc B 283:20160442

    PubMed  PubMed Central  Google Scholar 

  • Camp EF, Nitschke MR, Rodolfo-Metalpa R, Houlbreque F, Gardner SG, Smith DJ, Zampighi M, Suggett DJ (2017) Reef-building corals thrive within hot-acidified and deoxygenated waters. Sci Reps 7:2434

    Google Scholar 

  • Camp EF, Schoepf V, Mumby PJ, Hardtke LA, Rodolfo-Metalpa R, Smith DJ, Suggett DJ (2018) The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front Mar Sci 5:4

    Google Scholar 

  • Camp EF, Edmondson J, Doheny A, Rumney J, Grima AJ, Huete A, Suggett DJ (2019) Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions. Mar Ecol Prog Ser 625:1–14

    CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecol 18(1):117–143

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6. 2006. user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Coenye T, Peeters E, Nelis HJ (2007) Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res Microbiol 158:386–392

    CAS  PubMed  Google Scholar 

  • Cohen AL, Holcomb M (2009) The future of ocean biogeochemistry in a high-CO2 world. Oceanogr 22:118–127

    Google Scholar 

  • Comeau S, Carpenter RC, Edmunds PJ (2016) Effects of pCO2 on photosynthesis and respiration of tropical scleractinian corals and calcified algae. ICES J Mar Sci 74(109):2–102

    Google Scholar 

  • Cunning R, Gillette P, Capo T, Galvez K, Baker AC (2015) Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs 34:155–160

    Google Scholar 

  • Cáceres MD, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecol 90(12):3566–3574

    Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Sci 323:116–119

    Google Scholar 

  • Ebert D (2013) The epidemiology and evolution of symbionts with mixed-mode transmission. Ann Review Ecol Evol Systematics 44:7.1–7.21

    Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinfor 27(16):2194–2200

    CAS  Google Scholar 

  • Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML (2015) Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME 9:968

    CAS  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165

    CAS  Google Scholar 

  • Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110

    Google Scholar 

  • Goyen S, Camp EF, Fujise L, Lloyd A, Nitschke MR, LaJeunensse T, Kahlke T, Ralph PJ, Suggett D (2019) Mass coral bleaching of P. versipora in Sydney Harbour driven by the 2015–2016 heatwave. Coral Reefs 38(4):815–830

    Google Scholar 

  • Gómez-Cabrera MD, Ortiz JC, Loh WK, Ward S, Hoegh-Guldberg O (2008) Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27:219–226

    Google Scholar 

  • Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, Ainsworth TD (2018) Rethinking the coral microbiome: simplicity exists within a diverse microbial biosphere. MBio 9:e00812–e00818

    PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 29:4–158

    Google Scholar 

  • Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Chang 2:116–120

    Google Scholar 

  • Howells EJ, Abrego D, Meyer E, Kirk NL, Burt JA (2016) Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures. Global Change Biol 22:2702–2714

    Google Scholar 

  • Hume BCC, D’Angelo C, Smith EG, Stevens JR, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hume BC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc Nat Acad Sci 113(16):4416–4421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hume BCC, Smith EG, Ziegler M, Warrington HJM, Burt JA, LaJeunesse TC, Wiedenmann J, Voolstra CR (2019) SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Molecular Ecology Resources 19:1063–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JB, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nat 546(7656):82

    CAS  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Sci 359:80–83

    CAS  Google Scholar 

  • Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Env Microbiol 12:1889–1898

    CAS  Google Scholar 

  • Hutchins DA, Fu F (2017) Microorganisms and ocean global change. Nature Microbio 2:17058

    CAS  Google Scholar 

  • IPCC (2014) Climate Change 2014: synthesis report. Contribution of working groups I, II and III to the 5th assessment report of the intergovernmental panel on climate change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp

  • Kenkel CD, Moya A, Strahl J, Humphrey C, Bay LK (2018) Functional genomic analysis of corals from natural CO2-seeps reveals core molecular responses involved in acclimatization to ocean acidification. Global Change Biol 24:158–171

    Google Scholar 

  • Kleypas JA, McManus JW, Meñez LA (2009) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Bio 141:387–400

    Google Scholar 

  • LaJeunesse TC (2004) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    PubMed  Google Scholar 

  • LaJeunesse TC, Loh WK, Van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanography 48:2046–2054

    Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Seri 284:147–161

    Google Scholar 

  • LaJeunesse TC, Loh W, Trench RK (2009) Do introduced endosymbiotic dinoflagellates ‘take’to new hosts? Biological Invasions 11:995–1003

    Google Scholar 

  • LaJeunesse TC, Wham DC, Pettay DT, Parkinson JE, Keshavmurthy S, Chen CA (2014) Ecologically differentiated stress-tolerant endosymbionts in the dinoflagellate genus Symbiodinium (Dinophyceae) Clade D are different species. Phycologia 53(4):305–319

    Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biol 28:2570–2580

    CAS  Google Scholar 

  • Lawson CA, Raina JB, Kahlke T, Seymour JR, Suggett DJ (2018) Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium. Environmental Microbio Rep 10(1):7–11

    CAS  Google Scholar 

  • Li J, Kuang W, Long L, Zhang S (2017) Production of quorum-sensing signals by bacteria in the coral mucus layer. Coral Reefs 36(4):1235–1241

    Google Scholar 

  • Luna GM, Biavasco F, Danovaro R (2007) Bacteria associated with the rapid tissue necrosis of stony corals. Environmental Microbiology 9:1851–1857

    CAS  PubMed  Google Scholar 

  • Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T (2000) Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J System Evo Microbio 50:835–846

    CAS  Google Scholar 

  • Matthews JL, Oakley CA, Lutz A, Hillyer KE, Roessner U, Grossman AR, Weis VM, Davy SK (2018) Partner switching and metabolic flux in a model cnidarian-dinoflagellate symbiosis. Proc Biol Sci 285:1892

    Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME 6(3):610

    CAS  Google Scholar 

  • McKew BA, Dumbrell AJ, Daud SD, Hepburn L, Thorpe E, Mogensen L, Whitby C (2012) Characterization of geographically distinct bacterial communities associated with coral mucus produced by Acropora spp. and Porites spp. Appl Environ Microbiol 78:5229–5237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meron D, Rodolfo-Metalpa R, Cunning R, Baker AC, Fine M, Banin E (2012) Changes in coral microbial communities in response to a natural pH gradient. ISME J 6:1775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan KM, Perry CT, Smithers SG, Johnson JA, Daniell JJ (2016) Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings. Sci Rep 19:29616

    Google Scholar 

  • Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS (2014) CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME 9:894

    Google Scholar 

  • Naumann MS, Niggl W, Laforsch C, Glaser C, Wild C (2009) Coral surface area quantification–evaluation of established techniques by comparison with computer tomography. Coral Reefs 28:109–117

    Google Scholar 

  • Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR (2016) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. App Microbiol Biotechnol 100:8315–8324

    CAS  Google Scholar 

  • Neave MJ, Michell CT, Apprill A, Voolstra CR (2017a) Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep 7:40579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR (2017b) Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J 11:186

    PubMed  Google Scholar 

  • Ng TY, Ang P (2016) Low symbiont diversity as a potential adaptive strategy in a marginal non-reefal environment: a case study of corals in Hong Kong. Coral Reefs 35:941–957

    Google Scholar 

  • Okazaki RR, Towle EK, van Hooidonk R, Mor C, Winter RN, Piggot AM, Cunning R, Baker AC, Klaus JS, Swart PK, Langdon C (2017) Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Global Change Biol 23:1023–1035

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH (2018) vegan: community ecology package. R package version 2.5-2

  • Oliver TA, Palumbi SR (2011) Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30:241–250

    Google Scholar 

  • Oliver EC, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander LV, Benthuysen JA, Feng M, Gupta AS, Hobday AJ, Holbrook NJ, Perkins-Kirkpatrick SE, Scannell HA, Straub SC, Wernberg T (2018) Longer and more frequent marine heatwaves over the past century. Nat Commun 9(1):1324

    PubMed  PubMed Central  Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Sci 344:895–898

    CAS  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR (2018) Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol 8:2240–2252

    PubMed  PubMed Central  Google Scholar 

  • Pogoreutz C, Gore MA, Perna G, Millar C, Nestler R, Ormond RF, Clarke CR, Voolstra CR (2019) Similar bacterial communities on healthy and injured skin of black tip reef sharks. BMC Anim Microbiome 1(1):9

    Google Scholar 

  • Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, Thurber RV, Zaneveld JR (2018) Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Com 9:4921

    Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam HM, Stat M, Pochon X, Gates RD (2012) Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc Royal Soc B Bio Sci 29:20121454

    Google Scholar 

  • Quigley KM, Willis BL, Bay LK (2016) Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. Royal Society Open Sci 3(10):160471

    Google Scholar 

  • R Studio Team (2015) RStudio: integrated development for R. RStudio, Boston, MA. www.rstudio.com

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    CAS  PubMed  Google Scholar 

  • Riegl B, Purkis SJ (2012) Coral reefs of the gulf: adaptation to environmental extremes. Springer, Dordrecht

    Google Scholar 

  • Roder C, Bayer T, Aranda M, Kruse M, Voolstra CR (2015) Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol Ecol 24:13

    Google Scholar 

  • Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change 1:308

    CAS  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 13:1–10

    Google Scholar 

  • Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12(1):87

    PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein RN, Cunning R, Baker AC (2017) Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment. J Exp Bio 220:1192–1196

    Google Scholar 

  • Stat M, Morris E, Gates RD (2008) Functional diversity in coral–dinoflagellate symbiosis. Proc Natl Acad Sci USA 105:9256–9261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl J, Stolz I, Uthicke S, Vogel N, Noonan SHC, Fabricius KE (2015) Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep. Comp Biochem Physiol A Physiol 184:179–186

    CAS  Google Scholar 

  • Suggett DJ, Warner ME, Leggat W (2017) Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends in Ecol Evol 32:735–745

    Google Scholar 

  • Suzuki G, Yamashita H, Kai S, Hayashibara T, Suzuki K, Iehisa Y, Okada W, Ando W, Komori T (2013) Early uptake of specific symbionts enhances the post-settlement survival of Acropora corals. Mar Ecol Prog Ser 494:149–158

    Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Bio Bull 201:348–359

    CAS  Google Scholar 

  • Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, Bourne DG, Cantin N, Foret S, Matz M, Miller DJ, Moya A, Putnam HM, Ravasi T, van Oppen MJH, Thurber RV, Vidal-Dupiol J, Voolstra CR, Watson S-A, Whitelaw E, Willis BL, Munday PL (2017) Rapid adaptive responses to climate change in corals. Nat Clim Change 7:627

    Google Scholar 

  • Tout J, Siboni N, Messer LF, Garren M, Stocker R, Webster NS, Ralph PJ, Seymour JR (2015) Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Front Microbio 6:432

    Google Scholar 

  • Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163

    PubMed  Google Scholar 

  • Vega Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2014) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Global Change Biol 20:544–554

    Google Scholar 

  • Yokouchi H, Fukuoka Y, Mukoyama D, Calugay R, Takeyama H, Matsunaga T (2006) Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using ϕ29 polymerase. Environ Micobio 8(7):1155–1163

    CAS  Google Scholar 

  • Zaneveld JR, McMinds R, Thurber RV (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nature Microbio 2(9):17121

    CAS  Google Scholar 

  • Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR (2016) Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Marine Poll Bull 105:629–640

    CAS  Google Scholar 

  • Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Comm 8:14213

    CAS  Google Scholar 

  • Ziegler M, Grupstra CG, Barreto MM, Eaton M, BaOmar J, Zubier K, Al-Sofyani AA, Turki AJ, Ormond R, Voolstra CR (2019) Coral bacterial community structure responds to environmental change in a host-specific manner. Nature Comm 10(1):3092

    Google Scholar 

Download references

Acknowledgements

We wish to express our deepest thanks to C. Payri and the captains of the IRD vessels for their fieldwork assistance. We also thank B. Pelletier and the Grand Observatoire du Pacifique du Sud (GOPS), for use of their instruments and facilities, and F. Benzoni for verifying our coral taxonomic identification.

Funding

EFC was supported by an Endeavour Postdoctoral Fellowship to collect and process the data. The contribution of DJS and EFC to manuscript writing and final preparation was through an Australian Research Council Discovery Project (160100271 to D.JS). BCCH, CP and CRV acknowledge funding by the King Abdullah University of Science and Technology (KAUST) and would like to thank the Bioscience Core Lab (BCL) at KAUST for sequencing assistance. We also wish to thank to Fonds Pacifique for financial support (Project 1722 ‘Identifying the value of New Caledonia’s “extreme” corals to manage reefs under climate change’ to DJS, RRM, EFC) in funding the workshop COLIMATIC where data for this manuscript were first discussed.

Author information

Authors and Affiliations

Authors

Contributions

EFC, DJS, FH and RRM led the project planning. EFC and DJS designed the study. EFC, DJS, MRN, MZ, RRM and SGG contributed to data collection. EFC undertook the DNA extractions with CRV carrying out the sequencing. CP, BCCH, EFC, MRN and CRV conducted the data analysis. MRN, EFC and BCCH compiled the figures. EFC, DJS and CRV led the writing of the manuscript with all authors contributing to the final manuscript preparation.

Corresponding author

Correspondence to Emma F. Camp.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Carly Kenkel

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camp, E.F., Suggett, D.J., Pogoreutz, C. et al. Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment. Coral Reefs 39, 701–716 (2020). https://doi.org/10.1007/s00338-019-01889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01889-3

Keywords

Navigation