Skip to main content

Advertisement

Log in

Recruit symbiosis establishment and Symbiodiniaceae composition influenced by adult corals and reef sediment

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

For most reef-building corals, the establishment of symbiosis occurs via horizontal transmission, where juvenile coral recruits acquire their algal symbionts (family Symbiodiniaceae) from their surrounding environment post-settlement. This transmission strategy allows corals to interact with a diverse array of symbionts, potentially facilitating adaptation to the newly settled environment. We exposed aposymbiotic Pseudodiploria strigosa recruits from the Flower Garden Banks to natal reef sediment (C−S+), symbiotic adult coral fragments (C+S−), sediment and coral fragments (C+S+), or seawater controls (C−S−) and quantified rates of symbiont uptake and Symbiodiniaceae community composition within each recruit using metabarcoding of the ITS2 locus. The most rapid uptake was observed in C+S+ treatments, and this combination also led to the highest symbiont alpha diversity in recruits. While C−S+ treatments exhibited the next highest uptake rate, only one individual recruit successfully established symbiosis in the C+S− treatment, suggesting that sediment both serves as a direct symbiont source for coral recruits and promotes (or, potentially, mediates) transmission from adult coral colonies. In turn, presence of adult corals facilitated uptake from the sediment, perhaps via chemical signaling. Taken together, our results reinforce the key role of sediment in algal symbiont uptake by P. strigosa recruits and suggest that sediment plays a necessary, but perhaps not sufficient, role in the life cycle of algal Symbiodiniaceae symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrego D, Van Oppen MJH, Willis BL (2009a) Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol 18:3518–3531

    Article  PubMed  Google Scholar 

  • Abrego D, Van Oppen MJH, Willis BL (2009b) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3532–3543

    Article  PubMed  Google Scholar 

  • Abrego D, Ulstrup KE, Willis BL, Van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B Biol Sci 275:2273–2282

    Article  CAS  Google Scholar 

  • Adams LM, Cumbo VR, Takabayashi M (2009) Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Mar Ecol Prog Ser 377:149–156

    Article  Google Scholar 

  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20

    Article  PubMed  Google Scholar 

  • Baker AC (2003) Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Barfield SJ, Aglyamova GV, Bay LK, Matz MV (2018) Contrasting effects of Symbiodinium identity on coral host transcriptional profiles across latitudes. Mol Ecol 27:3103–3115

    Article  CAS  PubMed  Google Scholar 

  • Baums IB, Devlin-Durante MK, Lajeunesse TC (2014) New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol 23:4203–4215

    Article  PubMed  Google Scholar 

  • Berkelmans R, van Oppen MJ (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B Biol Sci 273:2305–2312

    Article  Google Scholar 

  • Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM, Van Oppen MJH (2016) Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J 10:2693–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byler KA, Carmi-Veal M, Fine M, Goulet TL (2013) Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS ONE 8:e59596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffroth MA, Lewis CF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16:PR985–R987

    Article  CAS  Google Scholar 

  • Coffroth MA, Poland DM, Petrou EL, Brazeau DA, Holmberg JC (2010) Environmental Symbiont Acquisition May Not Be the Solution to Warming Seas for Reef-Building Corals. PLoS ONE 5:e13258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffroth MA, Santos SR, Goulet TL (2001) Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Mar Ecol Prog Ser 222:85–96

    Article  Google Scholar 

  • Cumbo VR, Baird AH, van Oppen MJH (2013) The promiscuous larvae: Flexibility in the establishment of symbiosis in corals. Coral Reefs 32:111–120

    Article  Google Scholar 

  • Cunning R, Vaughan N, Gillette P, Capo TR, Mate JL, Baker AC, Morgan SG (2015) Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change. Ecology 96:1411–1420

    Article  CAS  PubMed  Google Scholar 

  • Davies SW, Meyer E, Guermond SM, Matz MV (2014) A cross-ocean comparison of responses to settlement cues in reef-building corals. PeerJ 2:e333

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies SW, Rahman M, Meyer E, Green EA, Buschiazzo E, Medina M, Matz MV (2013) Novel polymorphic microsatellite markers for population genetics of the endangered Caribbean star coral, Montastraea faveolata. Mar Biodivers 43:167–172

    Article  Google Scholar 

  • Davies SW, Scarpino SV, Pongwarin T, Scott J, Matz MV (2015a) Estimating Trait Heritability in Highly Fecund Species. G3 (Bethesda) 5:2639–2645

    Article  CAS  Google Scholar 

  • Davies SW, Treml EA, Kenkel CD, Matz MV (2015b) Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean. Mol Ecol 24:70–82

    Article  CAS  PubMed  Google Scholar 

  • Dereeper A, Audic S, Claverie JM, Blanc G (2010) BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 10:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas AE (1998) Host benefit and the evolution of specialization in symbiosis. Heredity (Edinb) 81:599–603

    Article  Google Scholar 

  • Fitt WK (1984) The role of chemosensory behavior of Symbiodinium microadriaticum, intermediate hosts, and host behavior in the infection of coelenterates and molluscs with zooxanthellae. Mar Biol 81:9–17

    Article  Google Scholar 

  • Fitt WK, Trench RK (1981) Spawning, development, and acquisition of zooxanthellae by Tridacna squamosa (Mollusca, bivalvia). Biol Bull 161:213–235

    Article  Google Scholar 

  • Fournier A (2013) The story of symbiosis with zooxanthellae, or how they enable their host to thrive in a nutrient poor environment. Master Biosci Rev - Ec Norm Supérieure Lyon, p 8

  • Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD (2012) GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium-host symbioses. Mol Ecol Resour 12:369–373

    Article  PubMed  Google Scholar 

  • Gómez-Cabrera MC, Ortiz JC, Loh WKW, Ward S, Hoegh-Guldberg O (2007) Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27:219–226

    Article  Google Scholar 

  • Green EA, Davies SW, Matz MV, Medina M (2014) Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico. PeerJ 2:e386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagedorn M, Carter V, Zuchowicz N, Phillips M, Penfield C, Shamenek B, Vallen EA, Kleinhans FW, Peterson K, White M, Yancey PH (2015) Trehalose is a chemical attractant in the establishment of coral symbiosis. PLoS ONE 10:e0117087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. 25: Coral reefs, ecosystems of the world. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Hill R, Ralph PJ (2007) Post-bleaching viability of expelled zooxanthellae from the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 352:137–144

    Article  Google Scholar 

  • Howells EJ, Berkelmans R, Van Oppen MJH, Willis BL, Bay LK (2013) Historical thermal regimes define limits to coral acclimatization. Ecology 94:1078–1088

    Article  PubMed  Google Scholar 

  • Kenkel CD, Bay LK (2018) Exploring mechanisms that affect coral cooperation: symbiont transmission mode, cell density and community composition. PeerJ 6:e6047

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenkel CD, Goodbody-Gringley G, Caillaud D, Davies SW, Bartels E, Matz MV (2013) Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments. Mol Ecol 22:4335–4348

    Article  CAS  PubMed  Google Scholar 

  • Klein HU, Bartenhagen C, Kohlmann A, Grossmann V, Ruckert C, Haferlach T, Dugas M (2011) R453Plus1Toolbox: An R/Bioconductor package for analyzing Roche 454 sequencing data. Bioinformatics 27:1162–1163

    Article  CAS  PubMed  Google Scholar 

  • Kolde R (2015) Pheatmap: Pretty Heatmaps. R Package Version 1.0.8 http://cran.rproject.org/web/packages/pheatmap/index.html

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570.e6–2580.e6

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Pérez AL, Reyes-Bonilla H, Warner ME (2010) Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proceedings Biol Sci 277:2925–2934

    Article  Google Scholar 

  • Little AF, Van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science (80) 304:1492–1494

    Article  CAS  Google Scholar 

  • Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Bio Ecol 364:48–53

    Article  Google Scholar 

  • McIlroy SE, Coffroth MA (2017) Coral ontogeny affects early symbiont acquisition in laboratory-reared recruits. Coral Reefs 36:927–932

    Article  Google Scholar 

  • McMurdie PJ, Holmes S (2013) Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of Zooxanthallae by a reef coral. Bio Bull 137:506–523

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef Corals: Mutualistic Symbioses Adapted to Nutrient-Poor Environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Nitschke MR, Davy SK, Cribb TH, Ward S (2015) The effect of elevated temperature and substrate on free-living Symbiodinium cultures. Coral Reefs 34:161–171

    Article  Google Scholar 

  • Nitschke MR, Davy SK, Ward S (2016) Horizontal transmission of Symbiodinium cells between adult and juvenile corals is aided by benthic sediment. Coral Reefs 35:335–344

    Article  Google Scholar 

  • Parkinson JE, Banaszak AT, Altman NS, LaJeunesse TC, Baums IB (2015) Intraspecific diversity among partners drives functional variation in coral symbioses. Sci Rep 5:15667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078

    Article  Google Scholar 

  • Pochon X, Stat M, Takabayashi M, Chasqui L, Chauka LJ, Logan DDK, Gates RD (2010) Comparison of endosymbiotic and free-living Symbiodinium (dinophyceae) diversity in a hawaiian reef environment. J Phycol 46:53–65

    Article  CAS  Google Scholar 

  • Poland DM, Coffroth MA (2017) Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs 36:119–129

    Article  Google Scholar 

  • Poland DM, Mansfield JM, Hannes AR, Fairbank Lewis CL, Shearer TL, Connelly SJ, Kirk NL, Coffroth MA (2013) Variation in Symbiodinium communities in juvenile Briareum asbestinum (Cnidaria: Octocorallia) over temporal and spatial scales. Mar Ecol Prog Ser 476:23–37

    Article  Google Scholar 

  • Porto I, Granados C, Restrepo JC, Sánchez JA (2008) Macroalgal-associated dinoflagellates belonging to the genus Symbiodinium in caribbean reefs. PLoS ONE 3:e2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley KM, Bay LK, Willis BL (2017) Temperature and Water Quality-Related Patterns in Sediment-Associated Symbiodinium Communities Impact Symbiont Uptake and Fitness of Juveniles in the Genus Acropora. Front Mar Sci 4:401

    Article  Google Scholar 

  • Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, Bay LK (2014) Deep-sequencing method for quantifying background abundances of Symbiodinium types: Exploring the rare Symbiodinium biosphere in reef-building corals. PLoS ONE 9:e94297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Found Stat Comput Vienna, Austria

    Google Scholar 

  • Ralph PJ, Gademann R, Larkum AWD (2001) Zooxanthellae expelled from bleached corals at 33 °C are photosynthetically competent. Mar Ecol Prog Ser 220:163–168

    Article  CAS  Google Scholar 

  • Rippe JP, Matz MV, Green EA, Medina M, Khawaja NZ, Pongwarin T, Pinzón CJH, Castillo KD, Davies SW (2017) Population structure and connectivity of the mountainous star coral, Orbicella faveolata, throughout the wider Caribbean region. Ecol Evol 7:9234–9246

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci 105:10444–10449

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp KH, Ritchie KB, Schupp PJ, Ritson-Williams R, Paul VJ (2010) Bacterial acquisition in juveniles of several broadcast spawning coral species. PLoS ONE 5:e10898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stat M, Baker AC, Bourne DG, Correa AMS, Forsman Z, Huggett MJ, Pochon X, Skillings D, Toonen RJ, van Oppen MJH, Gates RD (2012) Molecular Delineation of Species in the Coral Holobiont. Adv Mar Biol 63:1–65

    Article  PubMed  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts-symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Swain TD, Chandler J, Backman V, Marcelino L (2016) Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct Ecol 31:172–183

    Article  Google Scholar 

  • Takabayashi M, Adams LM, Pochon X, Gates RD (2012) Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai’i and Florida. Coral Reefs 31:157–167

    Article  Google Scholar 

  • Takeuchi R, Jimbo M, Tanimoto F, Tanaka C, Harii S, Nakano Y, Yasumoto K, Watabe S (2017) Establishment of a model for chemoattraction of Symbiodinium and characterization of chemotactic compounds in Acropora tenuis. Fish Sci 83:479–487

    Article  CAS  Google Scholar 

  • Therneau TM, T. Lumley (2015) Package ‘survival.’ R Top Doc

  • Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR (2017) Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol Ecol 26:2640–2659

    Article  CAS  PubMed  Google Scholar 

  • Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov. and S. pilosum sp. nov.: gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol 23:469–481

    Article  Google Scholar 

  • van Oppen MJH (2004) Mode of zooxanthella transmission does not affect zooxanthella diversity in acroporid corals. Mar Biol 144:1–7

    Article  Google Scholar 

  • Weis VM, Reynolds WS, DeBoer MD, Krupp DA (2001) Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs 20:301–308

    Article  Google Scholar 

  • Yacobovitch T, Benayahu Y, Weis VM (2004) Motility of zooxanthellae isolated from the Red Sea soft coral Heteroxenia fuscescens (Cnidaria). J Exp Mar Bio Ecol 298:35–48

    Article  Google Scholar 

  • Yu G, Smith DK, Zhu H, Guan Y, Lam TTY (2017) ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8:28–36

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the National Science Foundation Grant DEB-1054766 to M.V.M., a departmental graduate student start-up award from the Section of Integrative Biology at the University of Texas at Austin to S.W.D., and the PADI Foundation Award to S.W.D. In addition, the Flower Garden Banks National Marine Sanctuary is acknowledged for boat time aboard the R/V Manta. We acknowledge Marie Strader for her confocal microscopy work and Galina Aglyamova for help in the molecular lab. Lastly, we would like to thank two anonymous reviewers for their critical feedback that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Davies.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Symbiodiniaceae uptake experimental design demonstrating the four different uptake treatments and the three replicate slides with settled P. strigosa corals (N = 16–55 recruits per slide) within each tank (3 tank systems for each uptake treatment). C−S+ = FGB natal reef sediment only, C+S− = Orbicella faveolata coral host fragment only, C+S+ = FGB natal reef sediment and O. faveolata coral host fragment, and C−S− = seawater control (PDF 251 kb)

Supplemental Figure 2

Mean temperature in a representative experimental tank through time. Black line indicates mean temperature and gray shading shows 95% confidence interval around that mean. Data were collected using Hobo data loggers (PDF 257 kb)

Supplemental Figure 3

ITS2 Symbiodiniaceae community library preparation. A. ITS amplicon for each sequenced coral adult and P. strigosa recruit. Cycle numbers ranged from 26 - 41 across samples (Supplemental Table S1). B. ITS2 amplicons alongside their no-template negative controls (black arrows) demonstrating that even under high cycle numbers (42 cycles) no amplification is observed in negative controls. Correlations between PCR cycle number and Shannon diversity (C.) and Simpson’s diversity (D.) across amplified recruit DNA (PDF 1093 kb)

Supplemental Table S1

Raw Amplicon Sequence Variant (ASV) counts (TXT 1600 kb)

Supplemental Table S2

Coral adult and recruit DNA sample ID’s and their associated uptake treatment tanks, raw 454 sequence numbers, dada2 filtered sequence numbers and total number of PCR cycles (PCR) ran for each sample to achieve a visual band on agarose gel (Supplementary Fig. 3A). Sample in bold was not included in downstream analyses due to low read depth. C−S+ = FGB natal reef sediment only, C+S− = Orbicella faveolata coral host fragment only, C+S+ = FGB natal reef sediment and O. faveolata coral host fragment, and C−S− = seawater control (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Kriefall, N.G., Emery, L.E. et al. Recruit symbiosis establishment and Symbiodiniaceae composition influenced by adult corals and reef sediment. Coral Reefs 38, 405–415 (2019). https://doi.org/10.1007/s00338-019-01790-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01790-z

Keywords

Navigation