Skip to main content
Log in

Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Mesophotic coral ecosystems (MCEs) are deep (> 30 m), light-dependent communities that are abundant in many parts of the global ocean. MCEs are potentially connected to shallow reefs via larval exchange and may act as refuges for reef organisms. However, MCE community level recovery after disturbance, and thus, community resilience, are poorly understood components of their capacity as refuges. To assess the potential for disturbance and growth to drive community structure on MCEs with differential biophysical conditions and coral communities, we collected colonies of Orbicella franksi and Porites astreoides and used computerized tomography to quantify calcification. The divergence of coral growth rates in MCEs with different environmental conditions may be species specific; habitat-forming O. franksi have slow and consistent growth rates of ~ 0.2 cm yr−1 below 30 m, regardless of mesophotic habitat, compared to ~ 1.0 cm yr−1 in shallow-water habitats. Slow skeletal growth rates in MCEs suggest that rates of recovery from disturbance will likely also be slow. Localized buffering of MCEs from the stressors affecting shallow reefs is therefore crucial to the long-term capacity of these sites to serve as refugia, given that skeletal extension and recovery from disturbance in MCEs will be significantly slower than on shallow reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bak RPM, Engel MS (1979) Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parental coral community. Mar Biol 54:341–352

    Article  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24:475–479

    Article  Google Scholar 

  • Baker PA, Weber JN (1975) Coral growth rate: variation with depth. Physics of the Earth and Planetary Interiors 27:57–61

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-6. http://CRAN.R-project.org/package=lmer4

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  PubMed  CAS  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Muir P, Englebert N, Bridge TCL, Hoegh-Guldberg O (2013) Cyclone damage at mesophotic depths on Myrmidon Reef (GBR). Coral Reefs 32:935

    Article  Google Scholar 

  • Bosscher H, Meesters EH (1992) Depth related changes in the growth rate of Montastrea annularis. Proc 7th Int Coral Reef Symp 1:507–512

  • Brandtneris VW, Brandt ME, Glynn PW, Gyory J, Smith TB (2016) Seasonal variability in calorimetric energy content of two Caribbean mesophotic corals. PLoS One 11:e0151953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bright AJ, Rogers CS, Brandt ME, Muller E, Smith TB (2016) Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck). Front Mar Sci 3:1–13

    Article  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529

    Article  Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    Article  PubMed  CAS  Google Scholar 

  • Carricart-Ganivet JP, Lough JM, Barnes DJ (2007) Growth and luminescence characteristics in skeletons of massive Porites from a depth gradient in the central Great Barrier Reef. J Exp Mar Bio Ecol 351:27–36

    Article  Google Scholar 

  • Chalker BE (1981) Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Mar Biol 63:135–141

    Article  Google Scholar 

  • Chornesky EA, Peters EC (1987) Sexual reproduction and colony growth in the scleractinian coral Porites astreoides. Biol Bull 172:161–177

    Article  Google Scholar 

  • Clark TR, Roff G, Zhao JX, Feng YX, Done TJ, McCook LJ, Pandolfi JM (2017) U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century. Proc Natl Acad Sci U S A 114:10350–10355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BE, Van Oppen MJ (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc Lond B Biol Sci 278:1840–1850

    Article  Google Scholar 

  • Costa B, Kendall MS, Parrish FA, Rooney J, Boland RC, Chow M, Lecky J, Montgomery A, Spalding H (2015) Identifying suitable locations for mesophotic hard corals offshore of Maui, Hawai‘i. PLoS One 10:e0130285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darling ES, Graham NAJ, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK (2017) Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36:561–575

    Article  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109:17995–17999

    Article  PubMed  PubMed Central  Google Scholar 

  • Dustan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol 33:101–107

    Article  Google Scholar 

  • Forrester GE (1990) Factors influencing the juvenile demography of a coral reef fish. Ecology 71:1666–1681

    Article  Google Scholar 

  • Gittings S, Bright T, Choi A, Barnett R (1988) The recovery process in a mechanically damaged coral reef community: recruitment and growth. Proc 6th Int Coral Reef Symp 2:226–230

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Goldberg WM (1983) Cay Sal Bank, Bahamas: a biologically impoverished, physically controlled environment. Atoll Res Bull 271:1–36

    Article  Google Scholar 

  • Goreau TF (1963) Calcium carbonate depostion by coralline algae and corals in relations to their roles as reef-builders. Ann N Y Acad Sci 109:127–167

    Article  PubMed  CAS  Google Scholar 

  • Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326

    Article  Google Scholar 

  • Green DH, Edmunds PJ, Carpenter RC (2008) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar Ecol Prog Ser 359:1–10

    Article  Google Scholar 

  • Groves S (2016) Physical drivers of community structure and growth among mesophotic coral ecosystems surrounding St. Thomas, U. S. Virgin Islands. MSc Thesis, University of the Virgin Islands [https://doi.org/10.13140/rg.2.2.11823.74406]

  • Helmle K, Kohler K, Dodge R (2002) Relative optical densitometry and the Coral X-radiograph densitometry system: Coral XDS. Int Soc Reef Studies 2002 European Meeting, Cambridge. Available at www.nova.edu/ocean/coralxds/index.html

  • Holstein DM, Smith TB, Paris CB (2016) Depth-independent reproduction in the reef coral Porites astreoides from shallow to mesophotic zones. PLoS One 11:e0146068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holstein DM, Smith TB, Gyory J, Paris CB (2015) Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci Rep 5:12407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hubbard DK, Scaturo D (1985) Growth rates of seven species of scleractinean corals from Cane Bay and Salt River, St. Croix. USVI. Bull Mar Sci 36:325–338

    Google Scholar 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263

    Article  Google Scholar 

  • Huston MA (1985) Variation in coral growth rates with depth. Coral Reefs 4:19–25

    Article  Google Scholar 

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian rccf corals. Mar Biol 43:201–208

    Article  Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Knowlton N, Jackson JBC (2009) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biology 6:e54

    Article  CAS  Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD (2010) Photoacclimatization by the coral Montastrea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    Article  PubMed  Google Scholar 

  • Lough JM, Barnes DJ (1992) Comparisons of skeletal density variations in Porites from the central Great Barrier Reef. J Exp Mar Bio Ecol 155:1–25

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Bio Ecol 245:225–243

    Article  PubMed  CAS  Google Scholar 

  • Lough JM, Cantin NE (2014) Perspectives on massive coral growth rates in a changing ocean. Biol Bull 226:187–202

    Article  PubMed  Google Scholar 

  • Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  • Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015a) Coral growth patterns of Montastraea cavernosa and Porites astreoides in the Florida Keys: the importance of thermal stress and inimical waters. J Exp Mar Bio Ecol 471:198–207

    Article  Google Scholar 

  • Manzello D, Enochs I, Kolodziej G, Carlton R (2015b) Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: an inshore–offshore comparison. Mar Ecol Prog Ser 521:81–89

    Article  Google Scholar 

  • Miller MW, Piniak GA, Williams DE (2011) Coral mass bleaching and reef temperatures at Navassa Island, 2006. Estuar Coast Shelf Sci 91:42–50

    Article  Google Scholar 

  • NOAA (2006) Tropical ocean coral bleaching indices. National Oceanic and Atmospheric Administration, Silver Springs, Maryland

    Google Scholar 

  • Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: community ecology package. R package version 2.2-1

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  PubMed  CAS  Google Scholar 

  • Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinneri JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes — ecological and economic consequences. Oceanogr Mar Biol Annu Rev 46:251–296

    Google Scholar 

  • Pratchett MS, Anderson KD, Hoogenboom MO, Widman E, Baird AH, Pandolfi JM, Edmunds PJ, Lough JM (2015) Spatial, temporal, and taxonomic variation in coral growth-implications for the structure and function of coral reef ecosystems. Oceanography and Marine Biology: An Annual Review 53:215–295

    Google Scholar 

  • Pyle RL, Boland R, Bolick H, Bowen BW, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery A, Parrish FA (2016) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. Int J Earth Sci 92:520–531

    Article  Google Scholar 

  • Risk M, Sammarco P (1991) Cross-shelf trends in skeletal density of the massive coral Porites lobata from the Great Barrier Reef. Mar Ecol Prog Ser 69:195–200

    Article  Google Scholar 

  • Scoffin TP, Tudhope AW, Brown BE, Chansang H, Cheeney RF (1992) Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11:1–11

    Article  Google Scholar 

  • Smith TB, Nemeth RS, Blondeau J, Calnan JM, Kadison E, Herzlieb S (2008) Assessing coral reef health across onshore to offshore stress gradients in the US Virgin Islands. Mar Pollut Bull 56:1983–1991

    Article  PubMed  CAS  Google Scholar 

  • Smith TB, Gyory J, Brandt ME, Miller WJ, Jossart J, Nemeth RS (2016a) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22:2756–2765

    Article  PubMed  Google Scholar 

  • Smith TB, Blondeau J, Nemeth RS, Pittman SJ, Calnan JM, Kadison E, Gass J (2010) Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U.S. Virgin Islands. Coral Reefs 29:289–308

    Article  Google Scholar 

  • Smith TB, Brandt ME, Calnan JM, Nemeth RS, Blondeau J, Kadison E, Taylor M, Rothenberger P (2013) Convergent mortality response of Caribbean coral species to seawater warming. Ecosphere 4:87

    Article  Google Scholar 

  • Smith TB, Kadison E, Ennis RS, Gyory J, Brandt ME, Wright V, Nemeth RS, Henderson L (2014) The United States Virgin Islands Territorial Coral Reef Monitoring Program (2014) Annual Report. University of the Virgin Islands, United States Virgin Islands, p 273

    Google Scholar 

  • Smith TB, Brandtneris VW, Canals M, Brandt ME, Martens J, Brewer RS, Kadison E, Kammann M, Keller J, Holstein DM (2016b) Potential structuring forces on a shelf edge upper mesophotic coral ecosystem in the US Virgin Islands. Front Mar Sci 3:115

    Google Scholar 

  • Todd PA (2008) Morphological plasticity in scleractinian corals. Biol. Rev. 83:315–337

    Article  PubMed  Google Scholar 

  • Vandermeer J (1981) The interference production principle: an ecological theory for agriculture. Bioscience 31:361–364

    Article  Google Scholar 

  • Viehman S, Thur SM, Piniak GA (2009) Coral reef metrics and habitat equivalency analysis. Ocean Coast Manag 52:181–188

    Article  Google Scholar 

  • Weiner J, Thomas SC (1986) Size variability and competition in plant monocultures. Oikos 47:211–222

    Article  Google Scholar 

  • Weinstein DK, Sharifi A, Klaus JS, Smith TB, Giri SJ, Helmle KP (2016) Coral growth, bioerosion, and secondary accretion of living orbicellid corals from mesophotic reefs in the US Virgin Islands. Mar Ecol Prog Ser 559:45–63

    Article  Google Scholar 

  • White KN, Ohara T, Fujii T, Kawamura I, Mizuyama M, Montenegro J, Shikiba H, Naruse T, McClelland T, Denis V, Reimer JD (2013) Typhoon damage on a shallow mesophotic reef in Okinawa. Japan. PeerJ 1:e151

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank N. Fogarty, R. Ennis, J. Keller, R. Brewer, V. Brandtneris, S. Prosterman, I. Byrne and J. Jossart. This work was supported by the Black Coral Penalty and Community Service Funds, VI EPSCoR (NSF #0814417) and the NSF S-STEM Scholarship. This research was conducted under the Virgin Islands Department of Planning and Natural Resources (VI DPNR) permit #DFW15066T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah H. Groves.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Dr. Mark J.A. Vermeij

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groves, S.H., Holstein, D.M., Enochs, I.C. et al. Growth rates of Porites astreoides and Orbicella franksi in mesophotic habitats surrounding St. Thomas, US Virgin Islands. Coral Reefs 37, 345–354 (2018). https://doi.org/10.1007/s00338-018-1660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-018-1660-7

Keywords

Navigation