Skip to main content

Advertisement

Log in

Biology and ecology of the vulnerable holothuroid, Stichopus herrmanni, on a high-latitude coral reef on the Great Barrier Reef

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Tropical aspidochirotid holothuroids are among the largest coral reef invertebrates, but gaps remain in our understanding of their ecological roles in lagoon sediment habitats, a vast component of coral-reef ecosystems. Stichopus herrmanni, listed as vulnerable (IUCN), is currently a major fishery species on the Great Barrier Reef (GBR) and throughout the Indo-Pacific. It is critical to characterise how this species interacts with its environment to understand how its removal may impact ecosystem functionality. We investigated seasonal variation in movement, bioturbation, feeding and gonad development of S. herrmanni over 3 yr at One Tree Reef, which has been a no-take area for decades. We determined the direct influence of the deposit-feeding activity of S. herrmanni on sediment turnover and granulometry, and on the abundance of infauna and benthic productivity in a comprehensive in situ analysis of tropical holothuroid feeding ecology. This species is highly mobile with identifiable individuals exhibiting site fidelity over 3 yr. With the potential to turn over an estimated 64–250 kg individual−1 yr−1, S. herrmanni is a major bioturbator. Stichopus herrmanni is a generalist feeder and influences trophic interactions by altering the abundance of infauna and microalgae. Stichopus herrmanni exhibited decreased feeding activity and gonad development in winter, the first documentation of a seasonal disparity in the bioturbation activity of a tropical holothuroid. Sediment digestion and dissolution by S. herrmanni has the potential to influence seawater chemistry, a particularly important feature in a changing ocean. Our results provide essential baseline data on the functional roles of this ecologically important species to inform development of ecosystem-based bêche-de-mer fisheries management on the GBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: Guide to software and statistical methods. Primer-E Ltd, Plymouth

    Google Scholar 

  • Anderson SC, Flemming JM, Watson R, Lotze HK (2011) Rapid global expansion of invertebrate fisheries: trends, drivers, and ecosystem effects. PLoS One 6:e14735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blott SJ, Pye K (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26:1237–1248

    Article  Google Scholar 

  • Bonham K, Held E (1963) Ecological observations on the sea cucumber Holothuria atra and H. leucospilota at Rongelap Atoll, Marshall Islands. Pacific Science 17:305–314

    Google Scholar 

  • Bourjon P, Morcel E (2016) Observations of juvenile Actinopyga echinites and Actinopyga mauritiana (Echinodermata: Holothuroidea) near the reef crest in a lagoon of Réunion. SPC Bêche-de-mer Information Bulletin 36:84–86

    Google Scholar 

  • Branch TA, Lobo AS, Purcell SW (2013) Opportunistic exploitation: an overlooked pathway to extinction. Trends Ecol Evol 28:409–413

    Article  PubMed  Google Scholar 

  • Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Annu Rev 49:1–42

    Google Scholar 

  • Cameron JL, Fankboner PV (1989) Reproductive biology of the commercial sea cucumber Parastichopus californicus (Stimpson) (Echinodermata: Holothuroidea) II. Observations on the ecology of development, recruitment, and the juvenile life stage. J Exp Mar Bio Ecol 127:43–67

    Article  Google Scholar 

  • Collard M, Eeckhaut I, Dehairs F, Dubois P (2014) Acid-base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva. Environ Sci Pollut Res Int 21:13602–13614

    Article  CAS  PubMed  Google Scholar 

  • Collard M, Laitat K, Moulin L, Catarino AI, Grosjean P, Dubois P (2013) Buffer capacity of the coelomic fluids in echinoderms. Comp Biochem Physiol 166:199–206

    Article  CAS  Google Scholar 

  • Conand C (1983) Methods of studying growth in holothurians and preliminary results from a bêche-de-mer tagging experiment in New Caledonia. SPC Fisheries Newsletter 26:31–38

    Google Scholar 

  • Conand C (1989) Les Holothuries Aspidochirotes du lagon de Nouvelle-Calédonie: biologie, écologie et exploitation. Etudes et Thèses. O.R.S.T.O.M., Paris, p 393

    Google Scholar 

  • Conand C (1991) Long-term movements and mortality of some tropical sea cucumbers monitored by tagging and recapture. In: Yanagisawa T, Yasumasu I, Oguro C, Suzuki N, Motokawa T (eds) Biology of Echinodermata. Balkema, Rotterdam, pp 169–175

    Google Scholar 

  • Conand C (1993a) Ecology and reproductive biology of Stichopus variegatus an Indo-Pacific coral reef sea cucumber (Echinodermata: Holothuroidea). Bull Mar Sci 52:970–981

    Google Scholar 

  • Conand C (1993b) Reproductive biology of the holothurians from the major communities of the New Caledonian Lagoon. Mar Biol 116:439–450

    Article  Google Scholar 

  • Conand C (1998) Overexploitation in the present world sea cucumber fisheries and perspectives in mariculture. Echinoderms 1998: Proceedings of the 9th International Echinoderm Conference, San Francisco, CA, USA. A.A. Balkema, Rotterdam, pp 449–454

  • Conand C (2001) Overview of sea cucumber fisheries over the last decade—what possibilities for a durable management? Echinoderms 2000: Proceedings of the 10th International Conference, Dunedin, New Zealand. Swets and Zeitlinger, Lisse, pp 339–344

  • Conand C, Polidoro BA, Mercier A, Gamboa R, Hamel J-F, Purcell SW (2014) The IUCN Red List assessment of aspidochirotid sea cucumbers and its implications. SPC Bêche-de-mer Information Bulletin 34:3–7

    Google Scholar 

  • Connell SD, Ghedini G (2015) Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol Evol 30:513–515

    Article  PubMed  Google Scholar 

  • Costa V, Mazzola A, Vizzini S (2014) Holothuria tubulosa Gmelin 1791 (Holothuroidea, Echinodermata) enhances organic matter recycling in Posidonia oceanica meadows. J Exp Mar Bio Ecol 461:226–232

    Article  Google Scholar 

  • de Oliveira DSA, Derycke S, Da Rocha CMC, Barbosa DF, Decraemer W, Dos Santos GAP (2016) Spatiotemporal variation and sediment retention effects on nematode communities associated with Halimeda opuntia (Linnaeus) Lamouroux (1816) and Sargassum polyceratium Montagne (1837) seaweeds in a tropical phytal ecosystem. Mar Biol 163:102

    Article  Google Scholar 

  • Diaz-Pulido G, McCook LJ, Dove S, Berkelmans R, Roff G, Kline DI, Weeks S, Evans RD, Williamson DH, Hoegh-Guldberg O (2009) Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS One 4:e5239

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupont S, Ortega-Martinez O, Thorndyke M (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449–462

    Article  CAS  PubMed  Google Scholar 

  • Eriksson H, Byrne M (2015) The sea cucumber fishery in Australia’s Great Barrier Reef Marine Park follows global patterns of serial exploitation. Fish Fish 16:329–341

    Article  Google Scholar 

  • Eriksson H, Clarke S (2015) Chinese market responses to overexploitation of sharks and sea cucumbers. Biol Conserv 184:163–173

    Article  Google Scholar 

  • Eriksson H, Thorne BV, Byrne M (2013) Population metrics in protected commercial sea cucumber populations (curryfish: Stichopus herrmanni) on One Tree Reef, Great Barrier Reef. Mar Ecol Prog Ser 473:225–234

    Article  Google Scholar 

  • Eriksson H, Torre-Castro M, Eklof J, Jiddawi N (2010) Resource degradation of the sea cucumber fishery in Zanzibar, Tanzania: a need for management reform. Aquatic Living Resources 23:387–398

    Article  Google Scholar 

  • Friedman K, Eriksson H, Tardy E, Pakoa K (2011) Management of sea cucumber stocks: patterns of vulnerability and recovery of sea cucumber stocks impacted by fishing. Fish Fish 12:75–93

    Article  Google Scholar 

  • Gattuso J, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434

    Article  Google Scholar 

  • Gillanders BM, Able KW, Brown JA, Eggleston DB, Sheridan PF (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Mar Ecol Prog Ser 247:281–295

    Article  Google Scholar 

  • Grüss A, Kaplan DM, Guénette S, Roberts CM, Botsford LW (2011) Consequences of adult and juvenile movement for marine protected areas. Biol Conserv 144:692–702

    Article  Google Scholar 

  • Hammond LS (1981) An analysis of grain size modification in biogenic carbonate sediments by deposit-feeding holothurians and echinoids (Echinodermata). Limnol Oceanogr 26:898–906

    Article  CAS  Google Scholar 

  • Hammond LS (1982) Patterns of feeding and activity in deposit-feeding holothurians and echinoids (Echinodermata) from a shallow back-reef lagoon, Discovery Bay, Jamaica. Bull Mar Sci 32:549–571

    Google Scholar 

  • Hasan MH (2005) Destruction of a Holothuria scabra population by overfishing at Abu Rhamada Island in the Red Sea. Mar Environ Res 60:489–511

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Xu Y, Wen J, Zhang L, Fan S, Su T (2010) Larval development and juvenile growth of the sea cucumber Stichopus sp. (curryfish). Aquaculture 300:73–79

    Article  Google Scholar 

  • Hudson LR, Wigham BD, Solan M, Rosenberg R (2005) Feeding behaviour of deep-sea dwelling holothurians: inferences from a laboratory investigation of shallow fjordic species. J Mar Syst 57:201–218

    Article  Google Scholar 

  • Jeffery SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophyll a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  Google Scholar 

  • Johnstone RW, Koop K, Larkum AWD (1990) Physical aspects of coral reef lagoon sediments in relation to detritus processing and primary production. Mar Ecol Prog Ser 66:273–283

    Article  Google Scholar 

  • Kinch J, Purcell S, Uthicke S, Friedman F (2008) Papua New Guinea: a hotspot for sea cucumber fisheries in the western Central Pacific. In: Toral-Granda V, Lovatelli A Vasconcellos M (eds) Sea cucumbers. A global review of fisheries and trade. FAO Fisheries and Aquaculture Technical Paper. No. 516. FAO, Rome, pp 57–77

  • Klinger TS, Johnson CR (1998) Spatial and temporal distribution of feeding of Aspidochirotida (Holothuroidea) on Heron Island, Great Barrier Reef. Echinoderms 1998: Proceedings of the 9th International Echinoderm Conference, San Francisco, CA, USA. A.A. Balkema, Rotterdam

  • Klinger TS, Johnson CR, Jell J (1994) Sediment utilization, feeding-niche breadth, and feeding-niche overlap of Aspidochirotida (Echinodermata: Holothuroidea) at Heron Island, Great Barrier Reef. Echinoderms through time. Proceedings of the 8th International Echinoderm Conference, Dijon, France. A.A. Balkema, Rotterdam

  • Koop K, Larkum AWD (1987) Deposition of organic material in a coral reef lagoon, One Tree Island, Great Barrier Reef. Estuar Coast Shelf Sci 25:1–9

    Article  CAS  Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Natl Acad Sci U S A 108:14515–14520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Ferse S, Ford A, Wild C, Mangubhai S (2017) Effect of sea cucumber density on the health of reef-flat sediments. In: Mangubhai S, W. Lalavanua W, Purcell SW (eds.) Fiji’s sea cucumber fishery: advances in science for improved management. Report No. 01/17, Wildlife Conservation Society, Suva, Fiji, pp 54–61

  • MacTavish T, Stenton-Dozey J, Vopel K, Savage C (2012) Deposit feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS One 7:e50031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangion P, Taddei D, Frouin P, Conand C (2004) Feeding rate and impact of sediment reworking by two deposit feeders Holothuria leucospilota and Holothuria atra on a fringing reef (Reunion Island, Indian Ocean). In: Heinzler T, Nebelsick J (eds) Echinoderms: Munchen, Proceedings of the 11th International Echinoderm Conference, Munich, Germany. Balkema, Leiden, the Netherlands, pp 311-–317

  • Michio K, Kengo K, Yasunori K, Hitoshi M, Takayuki Y, Hideaki Y, Hiroshi S (2003) Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of the enclosed sea. Mar Pollut Bull 47:118–125

    Article  CAS  PubMed  Google Scholar 

  • Moriarty DJW (1982) Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Aust J Mar Freshw Res 33:255–263

    Article  Google Scholar 

  • Moriarty DJW, Pollard PC, Hunt WG, Moriarty CM, Wassenberg TJ (1985) Productivity of bacteria and microalgae and the effect of grazing by holothurians in sediments on a coral reef flat. Mar Biol 85:293–300

    Article  Google Scholar 

  • Namukose M, Msuya FE, Ferse SCA, Slater MJ, Kunzmann A (2016) Growth performance of the sea cucumber Holothuria scabra and the seaweed Eucheuma denticulatum: integrated mariculture and effects on sediment organic characteristics. Aquac Environ Interact 8:179–189

    Article  Google Scholar 

  • Navarro PG, Garcia-Sanz S, Barrio JM, Tuya F (2013) Feeding and movement patterns of the sea cucumber Holothuria sanctori. Mar Biol 160:2957–2966

    Article  Google Scholar 

  • Palazzo L, Wolfe K, Byrne M (2016) Discovery and description of Stichopus herrmanni juvenile nursery sites on Heron Reef, Great Barrier Reef. SPC Bêche-de-mer Information Bulletin 36:36–40

    Google Scholar 

  • Price ARG, Evan LE, Rowlands N, Hawkins JP (2013) Negligible recovery in Chagos holothurians (sea cucumbers). Aquat Conserv 23:811–819

    Article  Google Scholar 

  • Purcell SW (2010) Managing sea cucumber fisheries with an ecosystem approach. FAO Fisheries and aquaculture technical paper No. 520. FAO, Rome

  • Purcell SW, Kirby DS (2006) Restocking the sea cucumber Holothuria scabra: sizing no-take zones through individual-based movement modelling. Fish Res 80:53–61

    Article  Google Scholar 

  • Purcell SW, Eriksson H (2015) Echinoderms piggybacking on sea cucumbers: benign effects on sediment turnover and movement of hosts. Marine Biology Research 11:666–670

    Article  Google Scholar 

  • Purcell SW, Samyn Y, Conand C (2012) Commercially important sea cucumbers of the world. FAO Species catalogue for fisheries purposes No. 6. FAO, Rome, p 150

    Google Scholar 

  • Purcell SW, Conand C, Uthicke S, Byrne M (2016a) Ecological roles of exploited sea cucumbers. Oceanogr Mar Biol Annu Rev 54:367–386

    Google Scholar 

  • Purcell SW, Piddocke TP, Dalton SJ, Wang Y-G (2016b) Movement and growth of the coral reef holothuroids Bohadschia argus and Thelenota ananas. Mar Ecol Prog Ser 551:201–214

    Article  Google Scholar 

  • Purcell SW, Polidoro BA, Hamel J-F, Gamboa RU, Mercier A (2014) The cost of being valuable: predictors of extinction risk in marine invertebrates exploited as luxury seafood. Proc R Soc Lond B Biol Sci 281:20133296

    Article  Google Scholar 

  • Purcell SW, Mercier A, Conand C, Hamel J-F, Toral-Granda MV, Lovatelli A, Uthicke S (2013) Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish Fish 14:34–59

    Article  Google Scholar 

  • Quinn G, Keough M (2003) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Roberts D (1979) Deposit-feeding mechanisms and resource partitioning in tropical holothurians. J Exp Mar Bio Ecol 37:43–56

    Article  Google Scholar 

  • Roberts D, Bryce C (1982) Further observations on tentacular feeding mechanisms in holothurians. J Exp Mar Bio Ecol 59:151–163

    Article  Google Scholar 

  • Roberts D, Gebruk A, Levin V, Manship BAD (2000) Feeding and digestive strategies in deposit-feeding holothurians. Oceanogr Mar Biol Annu Rev 38:257–310

    Google Scholar 

  • Schneider K, Silverman J, Woolsey E, Eriksson H, Byrne M, Caldeira K (2011) Potential influence of aspidochirotid sea cucumbers on coral reef CaCO3 budget: a case study at One Tree Reef. J Geophys Res 116:G04032

    Article  Google Scholar 

  • Schneider K, Silverman J, Kravitz B, Rivlin T, Schneider-Mor A, Barbosa S, Byrne M, Caldeira K (2013) Inorganic carbon turnover caused by digestion of carbonate sands and metabolic activity of holothurians. Estuar Coast Shelf Sci 133:217–223

    Article  CAS  Google Scholar 

  • Shiell GR, Knott B (2010) Aggregations and temporal changes in the activity and bioturbation contribution of the sea cucumber Holothuria whitmaei (Echinodermata: Holothuroidea). Mar Ecol Prog Ser 415:127–139

    Article  Google Scholar 

  • Skewes TD, Dennis DM, Koutsoukos A, Haywood M, Wassenberg T, Austin M (2004) Stock survey and sustainable harvest for Torres Strait bêche-de-mer. Torres Strait Research Program Final Report, AFMA Project Number R01/1345. Australian Fisheries Management Authority, Canberra

  • Slater MJ, Jeffs AG (2010) Do benthic sediment characteristics explain the distribution of juveniles of the deposit-feeding sea cucumber Australostichopus mollis? Journal of Sea Research 64:241–249

    Article  Google Scholar 

  • Slater MJ, Carton AG (2010) Sea cucumber habitat differentiation and site retention as determined by intraspecific stable isotope variation. Aquaculture Research 41:e695–e702

    CAS  Google Scholar 

  • Uthicke S (1999) Sediment bioturbation and impact of feeding activity of Holothuria (Halodeima) atra and Stichopus chloronotus, two sediment feeding holothurians, at Lizard Island, Great Barrier Reef. Bull Mar Sci 64:129–141

    Google Scholar 

  • Uthicke S (2001) Nutrient regeneration by abundant coral reef holothurians. J Exp Mar Bio Ecol 265:153–170

    Article  CAS  Google Scholar 

  • Uthicke S, Klumpp DW (1998) Microphytobenthos community production at a near-shore coral reef: seasonal variation and response to ammonium recycled by holothurians. Mar Ecol Prog Ser 169:1–11

    Article  CAS  Google Scholar 

  • Uthicke S, Welch D, Benzie JAH (2004) Slow growth and lack of recovery in overfished holothurians on the Great Barrier Reef: evidence from DNA fingerprints and repeated large-scale surveys. Conserv Biol 18:1395–1404

    Article  Google Scholar 

  • van Hoytema N, Bednarz VN, Cardini U, Naumann MS, Al-Horani FA, Wild C (2016) The influence of seasonality on benthic primary production in a Red Sea coral reef. Mar Biol 163:52

    Article  Google Scholar 

  • Vidal-Ramirez F, Dove S (2016) Diurnal effects of Holothuria atra on seawater carbonate chemistry in a sedimentary environment. J Exp Mar Bio Ecol 474:156–163

    Article  CAS  Google Scholar 

  • Wiedemeyer WL (1994) Biology of small juveniles of the tropical holothurian Actinopyga echinites: growth, mortality, and habitat preferences. Mar Biol 120:81–93

    Google Scholar 

  • Wolfe K, Byrne M (2017) Population biology and recruitment of the vulnerable sea cucumber, Stichopus herrmanni, on a protected reef. Mar Ecol. doi:10.1111/maec.12389

    Google Scholar 

  • Wolkenhauer SM, Uthicke S, Burridge C, Skewes T, Pitcher R (2010) The ecological role of Holothuria scabra (Echinodermata: Holothuroidea) within subtropical seagrass beds. J Mar Biol Assoc UK 90:215–223

    Article  Google Scholar 

  • Yamanouti T (1939) Ecological and physiological studies on the holothurians in the coral reef of Palao Islands. Palao Tropical Biological Station Studies 25:603–635

    Google Scholar 

  • Yingst JY (1976) The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. J Exp Mar Bio Ecol 23:55–69

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Ph.D. scholarship from the University of Sydney and grants from the Mohamed bin Zayed Species Conservation Fund, the Great Barrier Reef Foundation, the Great Barrier Reef Marine Park Authority, the Paddy Palin Foundation and the Holsworth Wildlife Research Endowment. We thank Dr. Hampus Eriksson, Alexia Graba-Landry, Camila Ayroza, Steve Doo, Dione Deaker, Milly Raven, Ben Thorne and the staff of One Tree Island Research Station, a facility of the University of Sydney. This project operated under the GBRMPA Permit No. G13/36027.1. We thank the reviewers for comments that improved this manuscript. This is Sydney Institute of Marine Science Contribution No. 210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kennedy Wolfe.

Additional information

Communicated by Biology Editor Dr. Mark R. Patterson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfe, K., Byrne, M. Biology and ecology of the vulnerable holothuroid, Stichopus herrmanni, on a high-latitude coral reef on the Great Barrier Reef. Coral Reefs 36, 1143–1156 (2017). https://doi.org/10.1007/s00338-017-1606-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1606-5

Keywords

Navigation