Skip to main content

Advertisement

Log in

Skeletal records of community-level bleaching in Porites corals from Palau

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Tropical Pacific sea surface temperature is projected to rise an additional 2–3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These “stress bands” are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in conservation efforts to identify temperature-tolerant coral reef communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Barkley HC, Cohen AL, Golbuu Y, Starczak VR, DeCarlo TM, Shamberger KEF (2015) Changes in coral reef communities across a natural gradient in seawater pH. Sci Adv 1:e1500328

    Article  PubMed  PubMed Central  Google Scholar 

  • Berkelmans R, De’ath G, Kininmonth S, Skirving WJ (2004) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs 23:74–83

    Article  Google Scholar 

  • Bruno JF, Siddon CE, Witman JD, Colin PL, Toscano MA (2001) El Niño related coral bleaching in Palau, Western Caroline Islands. Coral Reefs 20:127–136

    Article  Google Scholar 

  • Cacciapaglia C, van Woesik R (2015) Climate-change refugia: shading reef corals by turbidity. Glob Chang Biol 22:1145–1154

    Article  PubMed  Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    Article  CAS  PubMed  Google Scholar 

  • Cantin NE, Lough JM (2014) Surviving coral bleaching events: Porites growth anomalies on the Great Barrier Reef. PLoS One 9:e88720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carilli J, Donner SD, Hartmann AC (2012) Historical temperature variability affects coral response to heat stress. PLoS One 7:e34418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carilli JE, Norris RD, Black B, Walsh SM, McField M (2009) Local stressors reduce coral resilience to bleaching. PLoS One 4:e6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carilli JE, Norris RD, Black B, Walsh SM, McField M (2010) Century-scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. Glob Chang Biol 16:1247–1257

    Article  Google Scholar 

  • Castillo KD, Helmuth BST (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Mar Biol 148:261–270

    Article  Google Scholar 

  • Castillo KD, Ries JB, Weiss JM (2011) Declining coral skeletal extension for forereef colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System, Southern Belize. PLoS One 6:e14615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo KD, Ries JB, Weiss JM, Lima FP (2012) Decline of forereef corals in response to recent warming linked to history of thermal exposure. Nat Clim Chang 2:756–760

    Article  Google Scholar 

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Chang Biol 14:529–538

    Article  Google Scholar 

  • Crook E, Cohen AL, Rebolledo-Vieyra M, Hernandez L, Paytan A (2013) Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci U S A 110:11044–11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119

    Article  CAS  PubMed  Google Scholar 

  • DeCarlo TM, Cohen AL (2016) coralCT: software tool to analyze computerized tomography (CT) scans of coral skeletal cores for calcification and bioerosion rates. Zenodo. doi:10.5281/zenodo.57855

    Google Scholar 

  • DeCarlo TM, Cohen AL, Barkley HC, Shamberger KEF, Cobban Q, Young C, Brainard RE, Golbuu Y (2015) Coral bioerosion is accelerated by ocean acidification and nutrients. Geology 43:7–10

    Article  CAS  Google Scholar 

  • Dodge RE, Szmant-Froelich A, Garcia R, Swart PK (1993) Skeletal structural basis of density banding in the reef coral Montastrea Annularis. Proc 7th Int Coral Reef Symp 1:186–195

  • Druffel E, Linick T (1978) Radiocarbon in annual coral rings of Florida. Geophys Res Lett 5:913–916

    Article  CAS  Google Scholar 

  • Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    Article  CAS  PubMed  Google Scholar 

  • Fritts H (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  • Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. Science 340:69–71

    Article  CAS  PubMed  Google Scholar 

  • Gleeson MW, Strong AE (1995) Applying MCSST to coral reef bleaching. Adv Sp Res 16:151–154

    Article  Google Scholar 

  • Glynn PW, Maté JL, Baker AC (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997-1998 El Nino-Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982-1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Golbuu Y, Victor S, Penland L, Idip D, Emaurois C, Okaji K, Yukihira H, Iwase A, Woesik R (2007) Palau’s coral reefs show differential habitat recovery following the 1998-bleaching event. Coral Reefs 26:319–332

    Article  Google Scholar 

  • Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS One 7:e33353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendy EJ, Lough JM, Gagan MK (2003) Historical mortality in massive Porites from the central Great Barrier Reef, Australia: evidence for past environmental stress? Coral Reefs 22:207–215

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate Change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hudson JH (1978) Growth rates in Montastraea annularis: a record of environmental change in Key Largo coral reef marine sanctuary. Florida Bull Mar Sci 31:444–459

    Google Scholar 

  • Jones RJ, Larkum AWD, Schreiber U (2006) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  Google Scholar 

  • Lough JM (2012) Small change, big difference: Sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011. J Geophys Res C 117:C09018

    Article  Google Scholar 

  • Lough JM, Cooper TF (2011) New insights from coral growth band studies in an era of rapid environmental change. Earth Sci Rev 108:170–184

    Article  CAS  Google Scholar 

  • Mallela J, Hetzinger S, Halfar J (2015) Thermal stress markers in Colpophyllia natans provide an archive of site-specific bleaching events. Coral Reefs 35:181–186

    Article  Google Scholar 

  • Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  • Mendes JM, Woodley JD (2002) Effect of the 1995-1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar Ecol Prog Ser 235:93–102

    Article  Google Scholar 

  • Middlebrook R, Hoegh-Guldberg O, Leggat W (2008) The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J Exp Biol 211:1050–1056

    Article  PubMed  Google Scholar 

  • Obura DO (2005) Resilience and climate change: lessons from coral reefs and bleaching in the Western Indian Ocean. Estuar Coast Shelf Sci 63:353–372

    Article  Google Scholar 

  • Osborne M, Dunbar R, Mucciarone D, Sanchez-Cabeza JA, Druffel E (2013) Regional calibration of coral-based climate reconstructions from Palau, Western Pacific Warm Pool (WPWP). Palaeogeogr Palaeoclimatol Palaeoecol 386:308–320

    Article  Google Scholar 

  • Penland L, Idip D, Kloulechad J, van Woesik R (2004) Coral spawning in the western Pacific Ocean is related to solar insolation: evidence of multiple spawning events in Palau. Coral Reefs 23:133–140

    Article  Google Scholar 

  • Pinherio J, Bates D, Saikat D, Sarkar D, R Development Core Team (2012) nlme: Linear and nonlinear mixed effects models: R package version 3.1-105

  • Schoepf V, Grottoli A, Levas SJ, Aschaffenburg MD, Baumann JH, Matsui Y, Warner ME (2015) Annual coral bleaching and the long-term recovery capacity of coral. Proc R Soc Lond B Biol Sci 282:20151887

    Article  Google Scholar 

  • Scoffin TP, Tudhope AW, Brown BE, Chansan H, Cheeney RF (1992) Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11:1–11

    Article  Google Scholar 

  • Shamberger KEF, Cohen AL, Golbuu Y, McCorkle DC, Lentz SJ, Barkley HC (2014) Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophys Res Lett 41:499–504

    Article  Google Scholar 

  • Smithers SG, Woodroffe CD (2001) Coral microatolls and 20th century sea level in the eastern Indian Ocean. Earth Planet Sci Lett 191:173–184

    Article  CAS  Google Scholar 

  • Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA (2013) Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob Chang Biol 19:3011–3023

    Article  PubMed  Google Scholar 

  • Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28:519–528

    Article  Google Scholar 

  • West JM, Salm RV (2003) Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conserv Biol 17:956–967

    Article  Google Scholar 

  • Wilkinson C (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, Australia

    Google Scholar 

  • van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Chang Biol 20:103–112

    Article  PubMed  Google Scholar 

  • van Woesik R, Houk P, Isechal AL, Idechong JW, Victor S, Golbuu Y (2012) Climate-change refugia in the sheltered bays of Palau: analogs of future reefs. Ecol Evol 2:2474–2484

    Article  PubMed  PubMed Central  Google Scholar 

  • van Woesik R, Sakai K, Ganase A, Loya Y (2011) Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67–76

    Article  Google Scholar 

  • Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21:414–416

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Y. Golbuu, T. DeCarlo, G.P. Lohmann, K. Pietro, K. Karnauskas, S. Lentz, D. McCorkle, A. Shalapyonok, D. Ketten, J. Arruda, S. Cramer, C. MacDonald, G. Mereb, A. Merep, M. Kaplan, and the staff of the Palau International Coral Reef Center for assistance with fieldwork and analyses. This work was supported by a NSF Graduate Research Fellowship and a Next Wave Fellowship to H. Barkley, National Science Foundation award OCE-1031971, the Dalio Foundation, Inc., through the Dalio Explore Fund, Ray Dalio through the WHOI Access to the Sea Fund, the Tiffany & Co. Foundation, and the Nature Conservancy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah C. Barkley.

Additional information

Communicated by Biology Editor Dr. Simon Davy

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkley, H.C., Cohen, A.L. Skeletal records of community-level bleaching in Porites corals from Palau. Coral Reefs 35, 1407–1417 (2016). https://doi.org/10.1007/s00338-016-1483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-016-1483-3

Keywords

Navigation