Skip to main content

Advertisement

Log in

Holocene sea level instability in the southern Great Barrier Reef, Australia: high-precision U–Th dating of fossil microatolls

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Three emergent subfossil reef flats from the inshore Keppel Islands, Great Barrier Reef (GBR), Australia, were used to reconstruct relative sea level (RSL). Forty-two high-precision uranium–thorium (U–Th) dates obtained from coral microatolls and coral colonies (2σ age errors from ±8 to 37 yr) in conjunction with elevation surveys provide evidence in support of a nonlinear RSL regression throughout the Holocene. RSL was as least 0.75 m above present from ~6500 to 5500 yr before present (yr BP; where “present” is 1950). Following this highstand, two sites indicated a coeval lowering of RSL of at least 0.4 m from 5500 to 5300 yr BP which was maintained for ~200 yr. After the lowstand, RSL returned to higher levels before a 2000-yr hiatus in reef flat corals after 4600 yr BP at all three sites. A second possible RSL lowering event of ~0.3 m from ~2800 to 1600 yr BP was detected before RSL stabilised ~0.2 m above present levels by 900 yr BP. While the mechanism of the RSL instability is still uncertain, the alignment with previously reported RSL oscillations, rapid global climate changes and mid-Holocene reef “turn-off” on the GBR are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abram NJ, McGregor HV, Gagan MK, Hantoro WS, Suwargadi BW (2009) Oscillations in the southern extent of the Indo-Pacific Warm Pool during the mid-Holocene. Quat Sci Rev 28:2794–2803

    Article  Google Scholar 

  • Baker R (2001) Inter-tidal fixed indicators of former Holocene sea levels in Australia: a summary of sites and a review of methods and models. Quat Int 83–85:257–273

    Article  Google Scholar 

  • Baker R, Haworth RJ (2000) Smooth or oscillating late Holocene sea-level curve? Evidence from the palaeo-zoology of fixed biological indicators in east Australia and beyond. Mar Geol 163:367–386

    Article  Google Scholar 

  • Bond G, Bonani G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266

    Article  CAS  Google Scholar 

  • Bond G, Bonani G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Article  CAS  PubMed  Google Scholar 

  • Brijker JM, Jung SJA, Ganssen GM, Bickert T, Kroon D (2007) ENSO-related decadal scale climate variability from the Indo-Pacific Warm Pool. Earth Planet Sci Lett 253:67–82

    Article  CAS  Google Scholar 

  • Brooke B, Ryan D, Pietsch T, Olley J, Douglas G, Packett R, Radke L, Flood P (2008) Influence of climate fluctuations and changes in catchment land use on late Holocene and modern beach-ridge sedimentation on a tropical macrotidal coast: Keppel Bay, Queensland, Australia. Mar Geol 251:195–208

    Article  Google Scholar 

  • Buddemeier RW, Hopley D (1988) Turn-ons and turn-offs: causes and mechanisms of the initiation and termination of coral reef growth. Proc 6th Int Coral Reef Symp 1:253–261

  • Bureau of Meteorology (2011) Australian climate variability and change — time series graphs. Australian Bureau of Meteorology, Commonwealth of Australia. http://www.bom.gov.au/climate

  • Camoin GF, Webster JM (2015) Coral reef response to Quaternary sea-level and environmental changes: state of the science. Sedimentology 62:401–428

    Article  Google Scholar 

  • Chappell J (1983) Evidence for smoothly falling sea-level relative to North Queensland, Australia, during the past 6,000 yr. Nature 302:406–408

    Article  Google Scholar 

  • Chappell J, Rhodes EG, Thom BG, Wallensky E (1982) Hydro-isostasy and the sea-level isobase of 5500 B.P. in north Queensland. Australia. Mar Geol 49:81–90

    Article  Google Scholar 

  • Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA, Asmerom Y (2000) The half-lives of uranium-234 and thorium-230. Chem Geol 169:17–33

    Article  CAS  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA, pp 1137–1186

    Google Scholar 

  • Clark JA, Farrell WE, Peltier WR (1978) Global changes in postglacial sea level: a numerical calculation. Quat Res 9:265–287

    Article  Google Scholar 

  • Clark TR, Roff G, J-x Zhao, Y-x Feng, Done TJ, Pandolfi JM (2014a) Testing the precision and accuracy of the U-Th chronometer for dating coral mortality events in the last 100 years. Quat Geochronol 23:35–45

    Article  Google Scholar 

  • Clark TR, J-x Zhao, Y-x Feng, Done TJ, Jupiter S, Lough J, Pandolfi JM (2012) Spatial variability of initial 230Th/232Th in modern Porites from the inshore region of the Great Barrier Reef. Geochem Cosmochim Acta 78:99–118

    Article  CAS  Google Scholar 

  • Clark TR, J-x Zhao, Roff G, Y-x Feng, Done TJ, Nothdurft LD, Pandolfi JM (2014b) Discerning the timing and cause of historical mortality events in modern Porites from the Great Barrier Reef. Geochim Cosmochim Acta 138:57–80

    Article  CAS  Google Scholar 

  • Cobb KM, Charles CD, Cheng H, Kastner M, Edwards RL (2003) U/Th-dating living and young fossil corals from the central tropical Pacific. Earth Planet Sci Lett 210:91–103

    Article  CAS  Google Scholar 

  • Flood PG, Frankel E (1989) Late Holocene higher sea level indicators from eastern Australia. Mar Geol 90:193–195

    Article  Google Scholar 

  • Gagan MK, Ayliffe LK, Hopley D, Cali J, Mortimer G, Chappell J, McCulloch MT, Head M (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science 279:1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Hamanaka N, Kan H, Yokoyama Y, Okamoto T, Nakashima Y, Kawana T (2012) Disturbances with hiatuses in high-latitude coral reef growth during the Holocene: correlation with millennial-scale global climate change. Glob Planet Change 80–81:21–35

    Article  Google Scholar 

  • Harris DL, Webster JM, Vila-Concejo A, Hua Q, Yokoyama Y, Reimer PJ (2015) Late Holocene sea-level fall and turn-off of reef flat carbonate production: rethinking bucket fill and coral reef growth models. Geology 43:175–178

    Article  Google Scholar 

  • Henderson GM (2002) Seawater (234U/ 238U) during the last 800 thousand years. Earth Planet Sci Lett 199:97–110

    Article  CAS  Google Scholar 

  • Hopley D (1980) Mid-Holocene high sea levels along the coastal plain of the Great Barrier Reef Province: A discussion. Mar Geol 35:M1–M9

    Article  Google Scholar 

  • Hopley D, Smithers SG, Parnell K (2007) The geomorphology of the Great Barrier Reef: development, diversity and change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hua Q, Webb GE, J-x Zhao, Nothdurft LD, Lybolt M, Price GJ, Opdyke BN (2015) Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes. Earth Planet Sci Lett 422:33–44

    Article  CAS  Google Scholar 

  • Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr 44:932–940

    Article  Google Scholar 

  • Kennedy DM, Woodroffe CD (2002) Fringing reef growth and morphology: a review. Earth Sci Rev 57:255–277

    Article  Google Scholar 

  • Kleypas JA, Hopley D (1992) Reef development across a broad continental shelf, southern Great Barrier Reef, Australia. Proc 7th Int Coral Reefs Symp 2:1129–1141

  • Lambeck K (1993) Glacial rebound and sea-level change: an example of a relationship between mantle and surface processes. Tectonophysics 223:15–37

    Article  Google Scholar 

  • Lambeck K (2002) Sea level change from mid Holocene to recent time: an Australian example with global implications. Geodynamics Series 29:33–50

    Article  Google Scholar 

  • Lambeck K, Nakada M (1990) Late Pleistocene and Holocene sea-level change along the Australian coast. Palaeogeog Palaeoclimatol Palaeoecol 89:143–176

    Article  Google Scholar 

  • Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci U S A 111:15296–15303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larcombe P, Woolfe KJ (1999) Terrigenous sediments as influences upon Holocene nearshore coral reefs, central Great Barrier Reef, Australia. Aust J Earth Sci 46:141–154

    Article  Google Scholar 

  • Leonard ND, Welsh KJ, J-x Zhao, Nothdurft LD, Webb GE, Major J, Y-x Feng, Price GJ (2013) Mid-Holocene sea-level and coral reef demise: U-Th dating of subfossil corals in Moreton Bay, Australia. The Holocene 23:1841–1852

    Article  Google Scholar 

  • Lewis SE, Wu RAJ, Webster JM, Shields GA (2008) Mid-late Holocene sea-level variability in eastern Australia. Terra Nova 20:74–81

    Article  Google Scholar 

  • Lewis SE, Sloss CR, Murray-Wallace CV, Woodroffe CD, Smithers SG (2013) Post-glacial sea-level changes around the Australian margin: a review. Quat Sci Rev 74:115–138

    Article  Google Scholar 

  • Ludwig KR (2003) Isoplot/Ex, version 3: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications, Berkeley, CA, USA

    Google Scholar 

  • Lybolt M, Neil DT, Zhao J, Feng Y, Yu K, Pandolfi J (2011) Instability in a marginal coral reef: the shift from natural variability to a human-dominated seascape. Front Ecol Environ 9:154–160

    Article  Google Scholar 

  • Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker DL, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255

    Article  Google Scholar 

  • McGregor HV, Gagan MK, McCulloch MT, Hodge E, Mortimer G (2008) Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea. Quat Geochronol 3:213–225

    Article  Google Scholar 

  • Mitrovica JX, Milne GA (2002) On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat Sci Rev 21:2179–2190

    Article  Google Scholar 

  • Murray-Wallace CV, Woodroffe CD (2014) Quaternary sea-level changes: a global perspective. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  • Nakada M, Lambeck K (1989) Late Pleistocene and Holocene sea-level change in the Australian region and mantle rheology. Geophys J In 96:497–517

    Article  Google Scholar 

  • Narayan YR, Lybolt M, J-x Zhao, Feng Y, Pandolfi JM (2015) Holocene benthic foraminiferal assemblages indicate long-term marginality of reef habitats from Moreton Bay, Australia. Palaeogeog Palaeoclimatol Palaeoecol 420:49–64

    Article  Google Scholar 

  • Neumann AC, Macintyre IG (1985) Reef response to sea level rise: keep-up, catch up or give-up. Proc 5th Int Coral Reef Symp 3:105–110

  • Nunn PD (1998) Sea-level changes over the past 1,000 years in the Pacific. J Coast Res 14:23–30

    Google Scholar 

  • Nunn PD (2000a) Environmental catastrophe in the Pacific Islands around A.D. 1300. Geoarchaeology 15:715–740

    Article  Google Scholar 

  • Nunn PD (2000b) Illuminating sea-level fall around AD 1220–1510 (730–440 cal yr BP) in the Pacific Islands: implications for environmental change and cultural transformation. N Z Geog 56:46–54

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Perry C, Smithers S (2011) Cycles of coral reef ‘turn-on’, rapid growth and ‘turn-off’ over the past 8500 years: a context for understanding modern ecological states and trajectories. Glob Chang Biol 17:76–86

    Article  Google Scholar 

  • Pirazzoli PA, Pluet J (1991) World atlas of Holocene sea-level changes. Elsevier, Amsterdam, New York

    Google Scholar 

  • Roche RC, Perry CT, Smithers SG, Leng MJ, Grove CA, Sloane HJ, Unsworth CE (2014) Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef. The Holocene 24:885–897

    Article  Google Scholar 

  • Rodriguez-Ramirez A, Grove CA, Zinke J, Pandolfi JM, J-x Zhao (2014) Coral luminescence identifies the Pacific decadal oscillation as a primary driver of river runoff variability impacting the southern Great Barrier Reef. PloS One 9:e84305

    Article  PubMed  PubMed Central  Google Scholar 

  • Schellmann G, Radtke U (2010) Timing and magnitude of Holocene sea-level changes along the middle and south Patagonian Atlantic coast derived from beach ridge systems, littoral terraces and valley-mouth terraces. Earth Sci Rev 103:1–30

    Article  CAS  Google Scholar 

  • Scoffin TP, Stoddart DR, Rosen BR (1978) The nature and significance of microatolls. Phil Trans R Soc Lond B Biol Sci 284:99–122

    Article  Google Scholar 

  • Shen C-C, Fan T-Y, Meltzner AJ, Taylor FW, Quinn TM, Chiang H-W, Kilbourne KH, Li K-S, Sieh K, Natawidjaja D, Cheng H, Wang X, Edwards RL, Lam DD, Hsieh Y-T (2008) Variation of initial 230Th/ 232Th and limits of high precision U-Th dating of shallow-water corals. Geochim Cosmochim Acta 72:4201–4223

    Article  CAS  Google Scholar 

  • Sloss CR, Murray-Wallace CV, Jones BG (2007) Holocene sea-level change on the southeast coast of Australia: a review. The Holocene 17:999–1014

    Article  Google Scholar 

  • Smithers SG, Woodroffe CD (2000) Microatolls as sea-level indicators on a mid-ocean atoll. Mar Geol 168:61–78

    Article  Google Scholar 

  • Smithers SG, Hopley D, Parnell KE (2006) Fringing and nearshore coral reefs of the Great Barrier Reef: episodic Holocene development and future prospects. J Coast Res 2006:175–187

    Article  Google Scholar 

  • Toth LT, Macintyre IG, Aronson RB, Vollmer SV, Hobbs JW, Urrego DH, Cheng H, Enochs IC, Combosch DJ, van Woesik R (2012) ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 337:81–84

    Article  CAS  PubMed  Google Scholar 

  • Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, Sheppard CRC, Spalding M, Stafford-Smith MG, Rogers AD (2009) The coral reef crisis: the critical importance of <350 ppm CO2. Mar Pollut Bull 58:1428–1436

    Article  CAS  PubMed  Google Scholar 

  • Wanner H, Mercolli L, Grosjean M, Ritz SP (2015) Holocene climate variability and change: a data-based review. J Geol Soc London 172:254–263

    Article  Google Scholar 

  • Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold events. Quat Sci Rev 30:3109–3123

    Article  Google Scholar 

  • Woodroffe CD, Horton BP (2005) Holocene sea-level changes in the Indo-Pacific. J Asian Earth Sci 25:29–43

    Article  Google Scholar 

  • Woodroffe CD, Kennedy DM, Hopley D, Rasmussen CE, Smithers SG (2000) Holocene reef growth in Torres Strait. Mar Geol 170:331–346

    Article  Google Scholar 

  • Woodroffe SA (2009) Testing models of mid to late Holocene sea-level change, North Queensland, Australia. Quat Sci Rev 28:2474–2488

    Article  Google Scholar 

  • Woodroffe SA, Long AJ, Milne GA, Bryant CL, Thomas AL (2015) New constraints on late Holocene eustatic sea-level changes from Mahé, Seychelles. Quat Sci Rev 115:1–16

    Article  Google Scholar 

  • Yu KF, Zhao JX (2010) U-series dates of Great Barrier Reef corals suggest at least +0.7 m sea level similar to 7000 years ago. The Holocene 20:161–168

    Article  Google Scholar 

  • Yu K, Hua Q, Zhao J-x, Hodge E, Fink D, Barbetti M (2010) Holocene marine 14C reservoir age variability: evidence from 230Th-dated corals in the South China Sea. Paleoceanography 25 (doi:10.1029/2009PA001831)

Download references

Acknowledgments

We thank C. Murray-Wallace and one anonymous reviewer for their comments which improved this manuscript. Also Hannah Markham, Mauro Lepore, Martina Prazeres, Ian Butler and others involved in fieldwork, the crew of MV Adori, and A.D. Nguyen. This study was funded by the National Environmental Research Programme Tropical Ecosystems Hub Project 1.3 to J-xZ, JMP, SGS, TRC, Y-xF and others, Australian Research Council Linkage, Infrastructure, Equipment and Facilities (LIEF) grant (LE0989067 for the MC-ICP-MS) to J-xZ, JMP, Y-xF and others, and an Australian Postgraduate Award to NDL. Samples were collected under permit G12/34,979.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole D. Leonard.

Additional information

Communicated by Geology Editor Prof. Chris Perry

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonard, N.D., Zhao, Jx., Welsh, K.J. et al. Holocene sea level instability in the southern Great Barrier Reef, Australia: high-precision U–Th dating of fossil microatolls. Coral Reefs 35, 625–639 (2016). https://doi.org/10.1007/s00338-015-1384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1384-x

Keywords

Navigation