Skip to main content

Advertisement

Log in

Species-specific declines in the linear extension of branching corals at a subtropical reef, Lord Howe Island

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Reef-building corals are extremely sensitive to changing temperature regimes, such that sustained increases in ocean temperatures are generally expected to have negative effects on coral growth and survivorship. At high-latitude reefs, however, projected increases in ocean temperature may actually increase coral growth (relaxing constraints imposed by cool winter temperatures), though this will depend upon on the rate and extent of declines in aragonite saturation, which is already much lower at high latitudes. This study quantified linear extension rates of six scleractinian corals, Acropora yongei, Isopora cuneata, Pocillopora damicornis, Porites heronensis, Seriatopora hystrix, and Stylophora pistillata, at Lord Howe Island in 2010/11. Contemporary growth rates were compared to equivalent data collected in 1994/95. There was marked interspecific variation in growth rates, with A. yongei growing almost twice the rate of all other species. Temporal changes in annual growth also varied among species. Growth rates of both A. yongei and Pocillopora damicornis were 30 % of that recorded in 1994/95. However, growth rates of Porites heronensis had not changed. Declines in the growth rates of these branching species may be attributable to declines in aragonite saturation or increases in summertime temperatures above limits for optimal growth, but either way it appears that climate change is having negative effects on corals, even at subtropical locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Anthony KRN, Kleypas JA, Gattuso JP (2011) Coral reefs modify their seawater carbon chemistry – implications for impacts of ocean acidification. Glob Chang Biol 17:3655–3666

    Article  Google Scholar 

  • Australian Institute of Marine Science (AIMS) (2014) Graph generated 3 April, 2014 using North Bay water temperatures Temperature logger and Data Centre, AIMS. Viewed 3rd April, 2014. http://data.aims.gov.au/aimsrtds/datatool.xhtml?site=1115&param=water%20temperature

  • Bak RPM, Nieuwland G, Meesters EH (2009) Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata? Bull Mar Sci 84:287–294

    Google Scholar 

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Bio Ecol 14:179–199

    Article  Google Scholar 

  • Cantin NE, Lough JM (2014) Surviving coral bleaching events: Porites growth anomalies on the Great Barrier Reef. PLoS One 9:e88720

    Article  PubMed Central  PubMed  Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    Article  CAS  PubMed  Google Scholar 

  • Coker D, Wilson S, Pratchett M (2014) Importance of live coral habitat for reef fishes. Rev Fish Biol Fish 24:89–126

    Article  Google Scholar 

  • Cooper TF, O’leary RA, Lough JM (2012) Growth of Western Australian corals in the Anthropocene. Science 335:593–596

    Article  CAS  PubMed  Google Scholar 

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Chang Biol 14:529–538

    Article  Google Scholar 

  • Crabbe MJC, Smith D (2005) Sediment impacts on growth rates of Acropora and Porites corals from fringing reefs of Sulawesi, Indonesia. Coral Reefs 24:437–441

    Article  Google Scholar 

  • Crossland CJ (1981) Seasonal growth of Acropora formosa and Pocillopora damicornis on a high latitude reef (Houtman Abrolhos, Western Australia). Proc 4th Int Coral Reef Symp. Manila 1:663–667

    Google Scholar 

  • Crossland CJ (1984) Seasonal-variations in the rates of calcification and productivity in the coral Acropora formosa on a high-latitude reef. Mar Ecol Prog Ser 15:135–140

    Article  CAS  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119

    Article  PubMed  Google Scholar 

  • Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brandt M, Bruckner AW, Bunkley-Williams L, Cameron A, Causey BD, Chiappone M, Christensen TRL, Crabbe MJC, Day O, de la Guardia E, Diaz-Pulido G, DiResta D, Gil-Agudelo DL, Gilliam DS, Ginsburg RN, Gore S, Guzman HM, Hendee JC, Hernandez-Delgado EA, Husain E, Jeffrey CFG, Jones RJ, Jordan-Dahlgren E, Kaufman LS, Kline DI, Kramer PA, Lang JC, Lirman D, Mallela J, Manfrino C, Marechal JP, Marks K, Mihaly J, Miller WJ, Mueller EM, Muller EM, Toro CAO, Oxenford HA, Ponce-Taylor D, Quinn N, Ritchie KB, Rodriguez S, Ramirez AR, Romano S, Samhouri JF, Sanchez JA, Schmahl GP, Shank BV, Skirving WJ, Steiner SCC, Villamizar E, Walsh SM, Walter C, Weil E, Williams EH, Roberson KW, Yusuf Y (2010) Caribbean Corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5(11):e13969

  • Edmunds PJ, Brown D, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Glob Chang Biol 18:2173–2183

    Article  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238

    Article  CAS  Google Scholar 

  • Feely RA, Sabine CL, Byrne RH, Millero FJ, Dickson AG, Wanninkhof R, Murata A, Miller LA, Greeley D (2012) Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean. Global Biogeochem Cycles 26:GB3001

  • Ferrier-Pagès C, Gattuso JP, Dallot S, Jaubert J (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19:103–113

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schultz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom & New York, USA, pp 129–234

  • Foster T, Short JA, Falter JL, Ross C, McCulloch MT (2014) Reduced calcification in Western Australian corals during anomalously high summer water temperatures. J Exp Mar Bio Ecol 461:133–143

    Article  CAS  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Gledhill DK, Wanninkhof R, Millero FJ, Eakin M (2008) Ocean acidification of the Greater Caribbean Region 1996-2006. J Geophys Res 113:C10031

    Article  Google Scholar 

  • Greenstein BJ, Pandolfi JM (2008) Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob Chang Biol 14:513–528

    Article  Google Scholar 

  • Grigg RW (1982) Darwin Point: A threshold for atoll formation. Coral Reefs 1:29–34

    Article  Google Scholar 

  • Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann N Y Acad Sci 1134:320–342

    Article  CAS  PubMed  Google Scholar 

  • Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558

    Article  Google Scholar 

  • Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 18:281–291

    Article  Google Scholar 

  • Harriott VJ, Harrison PL, Banks SA (1995) The coral communities of Lord Howe Island. Mar Freshw Res 46:457–465

    Article  Google Scholar 

  • Harrison P, Dalton S, Carroll A (2011) Extensive coral bleaching on the world’s southernmost coral reef at Lord Howe Island, Australia. Coral Reefs 30:775–775

    Article  Google Scholar 

  • Heron SF, Willis BL, Skirving WJ, Eakin CM, Page CA, Miller IR (2010) Summer Hot Snaps and Winter Conditions: Modelling White Syndrome Outbreaks on Great Barrier Reef Corals. PLoS One 5:e12210

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hoey AS, Pratchett MS, Cvitanovic C (2011) High macroalgal cover and low coral recruitment undermines the potential resilience of the world’s southernmost coral reef assemblages. PLoS One 6:e25824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hudson JH, Hanson KJ, Halley RB, Kindinger JL (1994) Environmental implications of growth rate changes in Montastrea Annularis: Biscayne National Park, Florida. Bull Mar Sci 54:647–669

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate Change 2007: Impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp 81–82

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The physical science basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp 1–33

    Google Scholar 

  • Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanography 22:108–117

    Article  Google Scholar 

  • Kleypas JA, Mcmanus JW, Menez LAB (1999a) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999b) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132

    Article  PubMed  Google Scholar 

  • Lamberts AE (1978) Coral growth: alizarin method. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, Paris, pp 253–357

    Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654

    Article  CAS  Google Scholar 

  • Lee K, Tong LT, Millero FJ, Sabine CL, Dickson AG, Goyet C, Park G-H, Wanninkhof R, Feely RA, Key RM (2006) Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys Res Lett 33:L19605

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program Developed for CO2 System Calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn

  • Liu G, Strong AE, Skirving W (2003) Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. EOS Trans Am Geophys Union 84:137–144

    Article  Google Scholar 

  • Liu G, Rauenzahn JL, Heron SF, Eakin CM, Skirving WJ, Christensen TRL, Strong AE, Li J (2013) NOAA Coral Reef Watch 50 km satellite sea surface temperature-based decision support system for coral bleaching management, NOAA Technical Report NESDIS 143. College Park, MD, NOAA/NESDIS, p 33

    Google Scholar 

  • Lough JM (2008) Coral calcification from skeletal records revisited. Mar Ecol Prog Ser 373:257–264

    Article  Google Scholar 

  • Lough JM (2012) Small change, big difference: sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011. J Geophys Res C 117:C09018

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Bio Ecol 245:225–243

    Article  PubMed  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758

    Article  Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163

    Article  Google Scholar 

  • McClanahan TR, Weil E, Maina J (2009) Strong relationship between coral bleaching and growth anomalies in massive Porites. Glob Chang Biol 15:1804–1816

    Article  Google Scholar 

  • Oliver JK, Chalker BE, Dunlap WC (1983) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. Long-term growth-response of Acropora formosa (Dana 1846). J Exp Mar Bio and Ecol 73:11–35

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Pratchett M, Trapon M, Berumen M, Chong-Seng K (2011) Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia. Coral Reefs 30:183–193

    Article  Google Scholar 

  • Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes - ecological and economic consequences. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanogr Mar Biol Ann Rev 46. RC Press-Taylor & Francis Group, Florida, USA, pp 251–296

    Chapter  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Roche RC, Abel RA, Johnson KG, Perry CT (2010) Quantification of porosity in Acropora pulchra (Brook 1891) using X-ray micro-computed tomography techniques. J Exp Mar Bio Ecol 396:1–9

    Article  Google Scholar 

  • Sabine C, Hankin S, Koyuk H, Bakker DC, Pfeil B, Olsen A, Metzl N, Kozyr A, Fassbender A, Manke A (2012) Surface Ocean CO2 Atlas (SOCAT) gridded data products. Earth Sys Sci Data Disc 5:781–804

    Article  Google Scholar 

  • Spalding MD, Ravilious C, Green EP (2001) World Atlas of Coral Reefs. University of California Press, Berkeley, USA, Prepared at the UNEP World Conservation Monitoring Centre, p 320

    Google Scholar 

  • Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA (2013) Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob Chang Biol 19:3011–3023

    Article  PubMed  Google Scholar 

  • United Nations Education, Scientific and Cultural Organization (UNESCO) (2014) Lord Howe Island Group. Accessed 25 June 2014. http://whc.unesco.org/en/list/186

  • van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Chang Biol 20:103–112 van

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a JCU-Griffith University Collaborative grant awarded to M Pratchett and G Diaz-Pulido, as well as an AIMS@JCU Honours grant awarded to K Anderson. Thanks to J. Casey for statistical advice. Pathfinder data were provided by GHRSST and the U.S. National Oceanographic Data Center, supported in part by a grant from the NOAA Climate Data Record (CDR) Program for satellites. The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen D. Anderson.

Additional information

Communicated by Geology Editor Prof. Chris Perry

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, K.D., Heron, S.F. & Pratchett, M.S. Species-specific declines in the linear extension of branching corals at a subtropical reef, Lord Howe Island. Coral Reefs 34, 479–490 (2015). https://doi.org/10.1007/s00338-014-1251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1251-1

Keywords

Navigation