Skip to main content

Advertisement

Log in

Predicting the distribution of Montastraea reefs using wave exposure

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

In the Caribbean region, forereef habitats dominated by Montastraea spp. have the highest biodiversity and support the largest number of ecosystem processes and services. Here we show that the distribution of this species-rich habitat can be explained by one environmental predictor: wave exposure. The relationship between wave exposure and the occurrence of Montastraea reefs was modelled using logistic regression for reefs throughout the Belize Barrier Reef, one of the largest and most topographically complex systems in the region. The model was able to predict correctly the occurrence of Montastraea reefs with an accuracy of 81%. Consistent with historical qualitative patterns, the distribution of Montastraea reefs is constrained in environments of high exposure. This pattern is likely to be driven by high rates of chronic sediment scour that constrain recruitment. The wide range of wave exposure conditions used to parameterize the model in Belize suggest that it should be transferable throughout much of the Caribbean region, constituting a fast and inexpensive alternative to traditional habitat mapping and complementing global efforts to map reef extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Allen T, Tolvanen H, Oertel G, McLeod G (2007) Spatial characterization of environmental gradients in a coastal lagoon, Chincoteague Bay. Estuaries and Coasts 30:959–977

    Google Scholar 

  • Andréfouët S, Muller-Karger F, Robinson J, Kranenburg C, Torres-Pulliza D, Spraggins S, Murch B (2006) Global assessment of modern coral reef extent and diversity for regional science and management applications a view from space. Proc 10th Int Coral Reef Symp 1:1732–1745

    Google Scholar 

  • Andréföuet S, Kramer P, Torres-Pulliza D, Joyce KE, Hochberg EJ, Garza-Perez R, Mumby PJ, Riegl B, Yamano H, White WH, Zubia M, Brock JC, Phinn SR, Naseer A, Hatcher BG, Müller-Karger FE (2003) Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens Environ 88:128–143

    Article  Google Scholar 

  • Bejarano S, Mumby PJ, Hedley JD, Sotheran I (2010) Combining optical and acoustic data to enhance the detection of Caribbean forereef habitats. Remote Sens Environ 114:2768–2778

    Article  Google Scholar 

  • Black KP (1993) The relative importance of local retention and inter-reef dispersal of neutrally buoyant material on coral reefs. Coral Reefs 12:43–53

    Article  Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions—1. Model description and validation. J Geophys Res (C Oceans) 104:7649–7666

    Article  Google Scholar 

  • Bries JM, Debrot AO, Meyer DL (2004) Damage to the leeward reefs of Curaçao and Bonaire, Netherlands Antilles from a rare storm event: hurricane Lenny, November 1999. Coral Reefs 23:297–307

    Article  Google Scholar 

  • Burke RB (1982) Reconnaissance study of the geomorphology and benthic communities of the outer barrier reef platform, Belize. In: Ruetzler K, Macintyre IG (eds) The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize I. Smithson Contrib Mar Sci, Smithsonian Institution Press, Washington, DC, pp 509–526

  • Burrows M, Harvey R, Robb L (2008) Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Mar Ecol Prog Ser 353:1–12

    Article  Google Scholar 

  • Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Biol Ecol 115:67–77

    Article  Google Scholar 

  • Denny M (1994) Extreme drag forces and the survival of wind- and water-swept organisms. J Exp Biol 194:97–115

    PubMed  Google Scholar 

  • Denny MW, Gaylord B (2010) Marine ecomechanics. Annual Review of Marine Science 2:89–114

    Article  PubMed  Google Scholar 

  • Denny MW, Shibata MF (1989) Consequences of surf-zone turbulence for settlement and external fertilization. Am Nat 134:859–889

    Article  Google Scholar 

  • Dollar SJ (1982) Wave stress and coral community structure in Hawaii. Coral Reefs 1:71–81

    Article  Google Scholar 

  • Done T (1983) Coral zonation: its nature and significance. In: Barnes DJ (ed) Perspectives on coral reefs. Australian Institute of Marine Science, Townsville, pp 107–153

    Google Scholar 

  • Edwards HJ, Elliott IA, Pressey RL, Mumby PJ (2010) Incorporating ontogenetic dispersal, ecological processes and conservation zoning into reserve design. Biol Conserv 143:457–470

    Article  Google Scholar 

  • Ekebom J, Laihonen P, Suominen T (2003) A GIS-based step-wise procedure for assessing physical exposure in fragmented archipelagos. Estuar Coast Shelf Sci 57:887–898

    Article  Google Scholar 

  • Fagerstrom JA (1987) The evolution of reef communities. John Wiley & Sons, New York

    Google Scholar 

  • Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51:331–363

    Article  PubMed  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Foster NL, Baums IB, Mumby PJ (2007) Sexual vs. asexual reproduction in an ecosystem engineer: the massive coral Montastraea annularis. J Anim Ecol 76:384–391

    Article  PubMed  Google Scholar 

  • Fox HE, Caldwell RL (2006) Recovery from blast fishing on coral reefs: a tale of two scales. Ecol Appl 16:1631–1635

    Article  PubMed  Google Scholar 

  • Garcon JS, Grech A, Moloney J, Hamann M (2010) Relative Exposure Index: an important factor in sea turtle nesting distribution. Aquat Conserv: Mar Freshw Ecosyst 20:140–149

    Article  Google Scholar 

  • Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  PubMed  CAS  Google Scholar 

  • Geister J (1977) The influence of wave exposure on the ecological zonation of Caribbean coral reefs. Proc 3rd Int Coral Reef Symp 2:23–29

    Google Scholar 

  • Geister J (1980) Calm-water reefs and rough-water reefs of the Caribbean Pleistocene. Acta Palaeontol Pol 25:541–556

    Google Scholar 

  • Gischler E, Hudson JH (1998) Holocene development of three isolated carbonate platforms, Belize, Central America. Mar Geol 144:333–347

    Article  Google Scholar 

  • Gischler E, Hudson JH (2004) Holocene development of the Belize Barrier Reef. Sediment Geol 164:223–236

    Article  Google Scholar 

  • Goreau TF (1959) The ecology of Jamaican coral reefs I. Species composition and zonation. Ecology 40:67–90

    Article  Google Scholar 

  • Gotelli NJ (1988) Determinants of recruitment, juvenile growth, and spatial distribution of a shallow-water gorgonian. Ecology 69:157–166

    Article  Google Scholar 

  • Graus RR, Macintyre IG (1989) The zonation patterns of Caribbean coral reefs as controlled by wave and light energy input, bathymetric setting and reef morphology: computer simulation experiments. Coral Reefs 8:9–18

    Article  Google Scholar 

  • Green D, Edmunds P, Carpenter R (2008) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar Ecol Prog Ser 359:1–10

    Article  Google Scholar 

  • Green EP, Mumby PJ, Edwards AJ, Clark CD (1996) A review of remote sensing for the assessment and management of tropical coastal resources. Coast Manage 24:1–40

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hamner WM, Hauri IR (1981) Effects of island mass: water flow and plankton pattern around a reef in the Great Barrier Reef lagoon, Australia. Limnol Oceanogr 26:1084–1102

    Article  Google Scholar 

  • Harborne AR, Mumby PJ, Zychaluk K, Hedley JD, Blackwell PG (2006a) Modeling the beta diversity of coral reefs. Ecology 87:2871–2881

    Article  PubMed  Google Scholar 

  • Harborne AR, Mumby PJ, Micheli F, Perry CT, Dahlgren CP, Holmes KE, Brumbaugh DR, Alan J. Southward CMYaLAF (2006b) The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes Adv Mar Biol 50:57–189

  • Hearn CJ, Atkinson MJ, Falter JL (2001) A physical derivation of nutrient-uptake rates in coral reefs: effects of roughness and waves. Coral Reefs 20:347–356

    Article  Google Scholar 

  • Hill N, Pepper A, Puotinen M, Hughes M, Edgar G, Barrett N, Stuart-Smith R, Leaper R (2010) Quantifying wave exposure in shallow temperate reef systems: applicability of fetch models for predicting algal biodiversity. Mar Ecol Prog Ser 417:83–95

    Article  Google Scholar 

  • Hudson JH (1981) Growth rates in Montastraea annularis: a record of environmental change in Key Largo Coral Reef Marine Sanctuary, Florida. Bull Mar Sci 31:444–459

    Google Scholar 

  • Hurd CL (2000) Water motion, marine macroalgal physiology and production. J Phycol 36:453–472

    Article  CAS  Google Scholar 

  • Jackson JBC (1992) Pleistocene perspectives on coral reef community structure. Am Zool 32:719–731

    Google Scholar 

  • Jackson JBC, Erwin DH (2006) What can we learn about ecology and evolution from the fossil record? Trends Ecol Evol 21:322–328

    Article  PubMed  Google Scholar 

  • Jonsson PR, Berntsson KM, Larsson AI (2004) Linking larval supply to recruitment: flow-mediated control of initial adhesion of barnacle larvae. Ecology 85:2850–2859

    Article  Google Scholar 

  • Jordán E (1989) Gorgonian community structure and reef zonation patterns on Yucatan coral reefs Bull Mar Sci 45:678–696

    Google Scholar 

  • Kjerfve B (1998) CARICOMP: Caribbean coral reef, seagrass and mangrove sites. UNESCO, Paris, p 347

    Google Scholar 

  • Knowlton N, Weil E, Weigt LA, Guzman HM (1992) Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science 255:330–333

    Article  PubMed  CAS  Google Scholar 

  • Koltes KH, Tschirky JJ, Feller IC (1998) Carrie Bow, Belize. In: Kjerfve B (ed) Caribbean Coastal Marine Productivity (CARICOMP): Coral reef, seagrass, and mangrove site characteristics. UNESCO, Paris, pp 79–94

    Google Scholar 

  • Macintyre IG (1988) Modern coral reefs of western Atlantic; new geological perspective. Am Assoc Pet Geol Bull 72:1360–1369

    Google Scholar 

  • Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480

    Article  PubMed  CAS  Google Scholar 

  • Mesolella KJ (1967) Zonation of uplifted Pleistocene coral reefs on Barbados, West Indies. Science 156:638–640

    Article  PubMed  CAS  Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233

    Article  Google Scholar 

  • Mumby PJ, Harborne AR (1999) Development of a systematic classification scheme of marine habitats to facilitate regional management and mapping of Caribbean coral reefs. Biol Conserv 88:155–163

    Article  Google Scholar 

  • Mumby PJ, Green EP, Edwards AJ, Clark CD (1997) Coral reef habitat-mapping: how much detail can remote sensing provide? Mar Biol 130:193–202

    Article  Google Scholar 

  • Mumby PJ, Skirving W, Strong AE, Hardy JT, LeDrew EF, Hochberg EJ, Stumpf RP, David LT (2004) Remote sensing of coral reefs and their physical environment. Mar Pollut Bull 48:219–228

    Article  PubMed  CAS  Google Scholar 

  • Mumby PJ, Broad K, Brumbaugh DR, Dahlgren CP, Harborne AR, Hastings A, Holmes KE, Kappel CV, Micheli F, Sanchirico JN (2008) Coral reef habitats as surrogates of species, ecological functions, and ecosystem services. Conserv Biol 22:941–951

    Article  PubMed  Google Scholar 

  • Pandolfi JM, Jackson JBC (2001) Community structure of Pleistocene coral reefs of Curaçao, Netherlands Antilles. Ecol Monogr 71:49–67

    Google Scholar 

  • Parnell KE (1988) Physical process studies in the Great Barrier Reef Marine Park. Prog Phys Geog 12:209–236

    Article  Google Scholar 

  • Possingham H, Ball I, Andelman S (2002) Mathematical models for identifying representative reserve networks. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer-Verlag, New York, New York, pp 291–306

    Google Scholar 

  • Pressey RL (2004) Conservation planning and biodiversity: assembling the best data for the job. Conserv Biol 18:1677–1681

    Article  Google Scholar 

  • Riegl BM, Purkis SJ (2005) Detection of shallow subtidal corals from IKONOS satellite and QTC View (50, 200 kHz) single-beam sonar data (Arabian Gulf; Dubai, UAE). Remote Sens Environ 95:96–114

    Article  Google Scholar 

  • Sammarco PW, Andrews JC (1989) The Helix Experiment: differential localized dispersal and recruitment patterns in Great Barrier Reef corals. Limnol Oceanogr 34:896–912

    Article  Google Scholar 

  • Sarkar S, Justus J, Fuller T, Kelley C, Garson J, Mayfield M (2005) Effectiveness of environmental surrogates for the selection of conservation area networks. Conserv Biol 19:815–825

    Article  Google Scholar 

  • Sheppard CRC (1982) Coral populations on reef slopes and their major controls. Mar Ecol Prog Ser 7:83–115

    Article  Google Scholar 

  • Stoddart DR (1969) Ecology and morphology of recent coral reefs. Biol Rev 44:433–498

    Article  Google Scholar 

  • Storlazzi CD, Brown EK, Field ME, Rodgers K, Jokiel PL (2005) A model for wave control on coral breakage and species distribution in the Hawaiian Islands. Coral Reefs 24:43–55

    Article  Google Scholar 

  • Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337

    Article  PubMed  Google Scholar 

  • Tolvanen H, Suominen T (2005) Quantification of openness and wave activity in archipelago environments. Estuar Coast Shelf Sci 64:436–446

    Article  Google Scholar 

  • Victor S (2008) Stability of reef framework and post settlement mortality as the structuring factor for recovery of Malakal Bay Reef, Palau, Micronesia: 25 years after a severe COTS outbreak. Estuar Coast Shelf Sci 77:175–180

    Article  Google Scholar 

  • Walker BK, Riegl B, Dodge RE (2008) Mapping coral reef habitats in southeast Florida using a combined technique approach. J Coast Res 24:1138–1150

    Article  Google Scholar 

  • Wesseling I, Uychiaoco AJ, Alino PM, Aurin T, Vermaat JE (1999) Damage and recovery of four Philippine corals from short-term sediment burial. Mar Ecol Prog Ser 176:11–15

    Article  Google Scholar 

  • West JM, Salm RV (2003) Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conserv Biol 17:956–967

    Article  Google Scholar 

  • White WH, Harborne AR, Sotheran IS, Walton R, Foster-Smith RL (2003) Using an acoustic ground discrimination system to map coral reef benthic classes. Int J Remote Sens 24:2641–2660

    Article  Google Scholar 

  • Wolanski E, Hamner WM (1988) Topographically controlled fronts in the ocean and their biological influence. Science 241:177–181

    Article  PubMed  CAS  Google Scholar 

  • Wolanski E, Fabricius K, Spagnol S, Brinkman R (2005) Fine sediment budget on an inner-shelf coral-fringed island, Great Barrier Reef of Australia. Estuar Coast Shelf Sci 65:153–158

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this effort was provided by the Higher Education Funding Council for England through the ORSAS scheme, the University of Exeter, NERC, the ARC, the GEF Coral Reef Targeted Research and the EU Future of Reefs in a Changing Environment project. We thank George (Jez) Roff for his valuable comments and discussion. This manuscript was produced from public domain resources. We are very grateful to those who have made such quality resources freely available to the research community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Chollett.

Additional information

Communicated by Environment Editor Prof. Rob van Woesik

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chollett, I., Mumby, P.J. Predicting the distribution of Montastraea reefs using wave exposure. Coral Reefs 31, 493–503 (2012). https://doi.org/10.1007/s00338-011-0867-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0867-7

Keywords

Navigation