Skip to main content

Advertisement

Log in

Associational refuges among corals mediate impacts of a crown-of-thorns starfish Acanthaster planci outbreak

Indirect positive interactions in communities

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Interactions among coral populations can moderate the impact of coral predator outbreaks, enhancing community resilience and recovery. This study used predator-exclusion cages and neighbour removals in a field experiment to test how indirect interactions between populations of three coral taxa, Acropora, Pocillopora, and Porites, influenced their survival during an outbreak of the crown-of-thorns starfish, Acanthaster planci, in Moorea, French Polynesia. High densities of corals enhanced survival by generating associational refuges: physical structures that impeded Acanthaster and protected corals, and by simple density-dependent prey dilution that reduced predation rates. Acanthaster showed feeding preferences, resulting in varying intensities of predation on corals, which (1) influenced the type and strength of the associational refuge among corals and (2) resulted in significant loss of the competitive dominants to the benefit of the competitive inferiors. The result was a set of indirect positive interactions (IPIs) that prevented Acanthaster from eradicating Acropora and may have enhanced Porites, a relatively weak competitor among corals. IPIs probably play a key role in many ecosystems, especially in coral reefs in which corals act as engineer species, to reduce impacts of perturbations and enhance community resilience. This study illustrates the importance of IPIs in community regulation with a new conceptual model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adjeroud M, Pratchett MS, Kospartov MC, Lejeusne C, Penin L (2007) Small-scale variability in the size structure of scleractinian corals around Moorea, French Polynesia: patterns across depths and locations. Hydrobiologia 589:117–126

    Article  Google Scholar 

  • Adjeroud M, Chancerelle Y, Schrimm M, Perez T, Lecchini D, Galzin R, Salvat B (2005) Detecting the effects of natural disturbances on coral assemblages in French Polynesia: A decade survey at multiple scales. Aquat Living Resour 18:111–123

    Article  Google Scholar 

  • Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, Lison de Loma T, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28:775–780

    Article  Google Scholar 

  • Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. Am Nat 169:195–206

    Article  PubMed  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Berumen ML, Pratchett MS (2006) Recovery without resilience: persistent disturbance and long-term shifts in the structure of fish and coral communities at Tiahura Reef, Moorea. Coral Reefs 25:647–653

    Article  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  • Chesson P, Kuang JJ (2008) The interaction between predation and competition. Nature 456:235–238

    Article  CAS  PubMed  Google Scholar 

  • Connell JH, Hughes TP, Walace CC, Tanner JE, Harms KE, Kerr AM (2004) A long-term study of competition and diversity of corals. Ecol Monogr 74:179–210

    Article  Google Scholar 

  • Cox EF (1986) The effects of a selective corallivore on growth rates and competition for space between two species of Hawaiian corals. J Exp Mar Biol Ecol 101:161–174

    Article  Google Scholar 

  • Crain CM, Bertness MD (2006) Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56:211–218

    Article  Google Scholar 

  • De’ath G, Moran PJ (1998) Factors affecting the behaviour of crown-of-thorns starfish (Acanthaster planci L.) on the Great Barrier Reef: 2: Feeding preferences. J Exp Mar Biol Ecol 220:107–126

    Article  Google Scholar 

  • Faure G (1989) Degradation of coral reefs at Moorea Island (French Polynesia) by Acanthaster planci. J Coast Res 5:295–305

    Google Scholar 

  • Grabowski JH, Hughes AR, Kimbro DL (2008) Habitat complexity influences cascading effects of multiple predators. Ecology 89:3413–3422

    Article  PubMed  Google Scholar 

  • Gurevitch J, Morrison JA, Hedges LV (2000) The interaction between competition and predation: a meta-analysis of field experiments. Am Nat 155:435–453

    CAS  PubMed  Google Scholar 

  • Hacker SD, Gaines SD (1997) Some implications of direct positive interactions for community species diversity. Ecology 78:1990–2003

    Article  Google Scholar 

  • Hall VR, Hughes TP (1996) Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77:950–963

    Article  Google Scholar 

  • Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 18:281–291

    Article  Google Scholar 

  • Hughes TP, Connell JH (1987) Population dynamics based on size or age? A reef-coral analysis. Am Nat 129:818–829

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Keesing JK, Lucas JS (1992) Field measurement of feeding and movement rates of the crown-of-thorns starfish Acanthaster planci (L.). J Exp Mar Biol Ecol 156:89–104

    Article  Google Scholar 

  • Kvitek RG, Oliver JS, DeGange AR, Anderson BS (1992) Changes in Alaskan soft-bottom prey communities along a gradient in sea otter predation. Ecology 73:413–428

    Article  Google Scholar 

  • Lenihan HS, Adjeroud M, Kotchen M, Hench J, Nakamura T (2008) Reef structure regulates small-scale spatial variation in coral bleaching. Mar Ecol Prog Ser 370:127–141

    Article  Google Scholar 

  • Levenbach S (2008) Community-wide ramifications of an associational refuge on shallow rocky reefs. Ecology 89:2819–2828

    Article  PubMed  Google Scholar 

  • Levenbach S (2009) Grazing intensity influences the strength of an associational refuge on temperate reefs. Oecologia 159:181–190

    Article  PubMed  Google Scholar 

  • Menge BA, Sutherland JP (1987) Community regulation: variation in disturbance, competition and predation in relation to environmental stress and recruitment. Am Nat 130:730–757

    Article  Google Scholar 

  • Michalet R, Brooker RW, Cavieres LA, Kikvidze Z, Lortie CJ, Pugnaire FI, Valiente-Banuet A, Callaway RM (2006) Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett 9:767–773

    Article  PubMed  Google Scholar 

  • Milchunas DG, Noy-Meir I (2002) Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 99:113–130

    Article  Google Scholar 

  • Paine RT (1974) Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15:93–120

    Article  CAS  PubMed  Google Scholar 

  • Penin L, Adjeroud M, Pratchett MS, Hughes TP (2007) Spatial distribution of juvenile and adult corals around Moorea (French Polynesia): implications for population regulation. Bull Mar Sci 80:379–389

    Google Scholar 

  • Penin L, Michonneau F, Baird AH, Connolly SR, Pratchett MS, Kayal M, Adjeroud M (2010) Early post-settlement mortality and the structure of coral assemblages. Mar Ecol Prog Ser 408:55–64

    Article  Google Scholar 

  • Pratchett MS (2007) Feeding preferences of Acanthaster planci (Echinodermata: Asteroidea) under controlled conditions of food availability. Pac Sci 61:113–120

    Article  Google Scholar 

  • Pratchett MS, Schenk TJ, Baine M, Syms C, Baird AH (2009) Selective coral mortality associated with outbreaks of Acanthaster planci L. in Bootless Bay, Papua New Guinea. Mar Environ Res 67:230–236

    Article  CAS  PubMed  Google Scholar 

  • Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791

    Article  Google Scholar 

  • Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91

    Article  Google Scholar 

  • Sandin SA, Pacala SW (2005) Fish aggregation results in inversely density-dependent predation on continuous coral reefs. Ecology 86:1520–1530

    Article  Google Scholar 

  • Schmitt RJ, Holbrook SJ, Brooks AJ, Lape JCP (2009) Intraguild predation in a structured habitat: distinguishing multiple-predator effects from competitor effects. Ecology 90:2434–2443

    Article  PubMed  Google Scholar 

  • Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Pauline Bosserelle, as well as to many volunteers from CRIOBE and Planète Urgence for assistance in the field, and to three anonymous reviewers for their critical comments on this manuscript. This study was supported by a grant from Société Polynésienne des Eaux et de l’Assainissement and Planète Urgence. H. Lenihan was supported by NSF (OCE0417412) and the Gordon and Betty Moore Foundation. This is another publication of the Moorea Coral Reef LTER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Kayal.

Additional information

Communicated by Biology Editor Dr. Hugh Sweatman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 Figure showing the density of Acanthaster planci on study site in Moorea, French Polynesia (PDF 11 kb)

338_2011_763_MOESM2_ESM.pdf

ESM 2 Protocol and results of the tests on the impact of caging treatments on light, mass water exchange, and sedimentation (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayal, M., Lenihan, H.S., Pau, C. et al. Associational refuges among corals mediate impacts of a crown-of-thorns starfish Acanthaster planci outbreak. Coral Reefs 30, 827–837 (2011). https://doi.org/10.1007/s00338-011-0763-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0763-1

Keywords

Navigation