Skip to main content

Advertisement

Log in

High levels of acrylate in the Great Barrier Reef coral Acropora millepora

  • Note
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

High concentrations of acrylate, 542–683 μmol g−1 of the non-skeletal dry mass (DM), were measured in the Great Barrier Reef coral, Acropora millepora, using quantitative nuclear magnetic resonance spectroscopy (qNMR). As the amount of NaCl salt in the samples was substantial but variable, the total carbon (TC) in the coral extracts was determined, and the carbon due to acrylate found to represent 13–15% of the TC present in the total organic extracts (TOE). Acrylate, a C3 compound, is thus a substantial carbon source in the coral holobiont and is known to be derived from dimethylsulfoniopropionate (DMSP), which has previously been found in corals and other organisms that harbor Symbiodinium spp. The reason for such high levels of acrylate in the corals is unknown; possible functions include antimicrobial and/or antioxidant roles, as well as playing a role in the structuring of the healthy resident coral bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Ackman R, Hingley J, MacKay K (1972) Dimethyl sulfide as an odor component in Nova Scotia fall mackerel. J Fish Res Board Can 29:1085–1088

    CAS  Google Scholar 

  • Ansede JH, Pellechia PJ, Yoch DC (2001) Nuclear magnetic resonance analysis of [1–13C]dimethylsulfoniopropionate (DMSP) and [1–13C]acrylate metabolism by a DMSP lyase-producing marine isolate of the α-subclass of Proteobacteria. Appl Environ Microbiol 67:3134–3139

    Article  CAS  PubMed  Google Scholar 

  • Broadbent A, Jones G (2004) DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Mar Freshw Res 55:849–855

    Article  CAS  Google Scholar 

  • Broadbent A, Jones G, Jones R (2002) DMSP in corals and benthic algae from the Great Barrier Reef. Estuar Coast Shelf Sci 55:547–555

    Article  CAS  Google Scholar 

  • Cantoni GL, Anderson DG (1956) Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J Biol Chem 222:171–177

    CAS  PubMed  Google Scholar 

  • Coffroth MA, Jackson MG, Matrai P, Rauschenberg C (2008) Variation in zooxanthellae production of dimethylsulfoniopropionate (DMSP). Proc 11th Int Coral Reef Symp

  • Curson ARJ, Rogers R, Todd JD, Brearley CA, Johnston AWB (2008) Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol 10:757–767

    Article  CAS  PubMed  Google Scholar 

  • Ettinger-Epstein P, Motti CA, de Nys R, Wright AD, Battershill CN, Tapiolas DM (2007) Acetylated sesterterpenes from the Great Barrier Reef sponge Luffariella variabilis. J Nat Prod 70:648–651

    Article  CAS  PubMed  Google Scholar 

  • Geffen Y, Ron EZ, Rosenberg E (2009) Regulation of release of antibacterials from stressed scleractinian corals. FEMS Microbiol Lett 295:103–109

    Article  CAS  PubMed  Google Scholar 

  • Hill RW, Dacey JWH, Krupp DA (1995) Dimethylsulfoniopropionate in reef corals. Bull Mar Sci 57:489–494

    Google Scholar 

  • Hill RW, Dacey JWH, Edward A (2000) Dimethylsulfoniopropionate in giant clams (Tridacnidae). Biol Bull 199:108–115

    Article  CAS  PubMed  Google Scholar 

  • Howard EC, Sun S, Biers EJ, Moran MA (2008) Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol 10:2397–2410

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Curran M, Broadbent A, King S, Fischer E, Jones R (2007) Factors affecting the cycling of dimethylsulfide and dimethylsulfoniopropionate in coral reef waters of the Great Barrier Reef. Environ Chem 4:310–322

    CAS  Google Scholar 

  • Levasseur M, Keller MD, Bonneau E, D’Amours D, Bellows WK (1994) Oceanographic basis of a DMS-related Atlantic cod (Gadus morhua) fishery problem: blackberry feed. Can J Fish Aquat Sci 51:881–889

    Article  CAS  Google Scholar 

  • Malin G, Kirst GO (1997) Algal production of dimethylsulfide and its atmospheric role. J Phycol 33:889–896

    Article  CAS  Google Scholar 

  • Naumann MS, Richter C, el-Zibdah M, Wild C (2009) Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. Mar Ecol Prog Ser 385:65–67

    Article  Google Scholar 

  • Noordkamp DJB, Gieskesb WWC, Gottschal JC, Foney LJ, van Rijsselb M (2000) Acrylate in Phaeocystis colonies does not affect the surrounding bacteria. J Sea Res 43:253–264

    Article  Google Scholar 

  • Pauli GF, Jaki BU, Lankin DC (2005) Quantitative 1H NMR: development and potential of a method for natural products analysis. J Nat Prod 68:133–149

    Article  CAS  PubMed  Google Scholar 

  • Raina J-B, Tapiolas DM, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulphur. Appl Env Microbiol 75:3492–3501

    Article  CAS  Google Scholar 

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  CAS  PubMed  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Sharon G, Rosenberg E (2008) Bacterial growth on coral mucus. Curr Microbiol 56:481–488

    Article  CAS  PubMed  Google Scholar 

  • Sieburth JM (1960) Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in Antarctic waters. Science 132:676–677

    Article  CAS  PubMed  Google Scholar 

  • Sieburth JM (1961) Antibiotic properties of acrylic acid, a factor in the gastrointestinal antiobioses of polar marine animals. J Bacteriol 82:72–79

    CAS  PubMed  Google Scholar 

  • Slezak DM, Puskaric S, Herndl GJ (1994) Potential role of acrylic acid in bacterioplankton communities in the sea. Mar Ecol Prog Ser 105:191–197

    Article  CAS  Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197

    Article  CAS  Google Scholar 

  • Steinke M, Malin G, Archer SD, Burkill PH, Liss PS (2002) DMS production in a cocclithophorid bloom: evidence for the importance of dinoflagellate DMSP lyases. Aquat Microb Ecol 26:259–270

    Article  Google Scholar 

  • Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function of DMSP and DMS in marine algae. Nature 418:317–320

    Article  CAS  PubMed  Google Scholar 

  • Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L (2007) Structural and regulatory genes required to make the gas dimethylsulfide in bacteria. Science 315:666–669

    Article  CAS  PubMed  Google Scholar 

  • Van Alstyne KL (2008) Ecological and physiological roles of dimethylsulfoniopropionate and its products in marine macroalgae. In: Amsler C (ed) Algal chemical ecology. Springer, Heidelberg, pp 173–194

    Chapter  Google Scholar 

  • Van Alstyne KL, Wolfe GV, Freidenburg TL, Neill A, Hicken C (2001) Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar Ecol Prog Ser 213:53–65

    Article  Google Scholar 

  • Van Alstyne KL, Schupp P, Slattery M (2006) The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates. Coral Reefs 25:321–327

    Article  Google Scholar 

  • Van Alstyne KL, Dominique VJ III, Muller-Parker G (2009) Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone-zooxanthella symbiosis. Coral Reefs 28:167–176

    Article  Google Scholar 

  • Van Bergeijk SA, Stal LJ (2001) Dimethylsulfoniopropionate and dimethylsulfide in the marine flatworm Convoluta roscoffensis and its algal symbiont. Mar Biol 138:209–216

    Article  Google Scholar 

  • Wild C, Woyt H, Huettel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98

    Article  CAS  Google Scholar 

  • Yoch DC (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68:5804–5815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs Chris Battershill, Nicole Webster, David Bourne, Mr Yui Sato and Mr Adrian Lutz for sample collections and Mr Jean-Baptiste Raina for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Tapiolas.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

P. Holloway is on leave from Department of Biology, University of Winnipeg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapiolas, D.M., Motti, C.A., Holloway, P. et al. High levels of acrylate in the Great Barrier Reef coral Acropora millepora . Coral Reefs 29, 621–625 (2010). https://doi.org/10.1007/s00338-010-0608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-010-0608-3

Keywords

Navigation