Skip to main content

Advertisement

Log in

Spatial predictability of juvenile fish species richness and abundance in a coral reef environment

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Juvenile reef fish communities represent an essential component of coral reef ecosystems in the current focus of fish population dynamics and coral reef resilience. Juvenile fish survival depends on habitat characteristics and is, following settlement, the first determinant of the number of individuals within adult populations. The goal of this study was to provide methods for mapping juvenile fish species richness and abundance into spatial domains suitable for micro and meso-scale analysis and management decisions. Generalized Linear Models predicting juvenile fish species richness and abundance were developed according to spatial and temporal environmental variables measured from 10 m up to 10 km in the southwest lagoon of New Caledonia. The statistical model was further spatially generalized using a 1.5-m resolution, independently created, remotely sensed, habitat map. This procedure revealed that : (1) spatial factors at 10 to 100-m scale explained up to 71% of variability in juvenile species richness, (2) a small improvement (75%) was gained when a combination of environmental variables at different spatial and temporal scales was used and (3) the coupling of remotely sensed data, geographical information system tools and point-based ecological data showed that the highest species richness and abundance were predicted along a narrow margin overlapping the coral reef flat and adjacent seagrass beds. Spatially explicit models of species distribution may be relevant for the management of reef communities when strong relationships exist between faunistic and environmental variables and when models are built at appropriate scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Adams AJ, Locascio JV, Robbins BD (2004) Microhabitat use by a post-settlement stage estuarine fish: evidence from relative abundance and predation among habitats. J Exp Mar Biol Ecol 299:17–33

    Article  Google Scholar 

  • Ahmad W, Neil DT (1994) An evaluation of landsat thematic mapper (TM) digital data for discriminating coral reef zonation: Heron Reef (GBR). Int J Remote Sens 15:2583–2597

    Article  Google Scholar 

  • Almany GR (2004) Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos 106:275–284

    Article  Google Scholar 

  • Almany GR, Webster MS (2006) The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs 25:19–22

    Article  Google Scholar 

  • Andréfouët S, Guzman H (2004) Coral reef distribution, status and geomorphology-biodiversity relationship in Kuna Yala (San Blas) archipelago, Caribbean Panama. Coral Reefs 24:31–42

    Article  Google Scholar 

  • Andréfouët S, Payri C (2001) Scaling-up carbon and carbonate metabolism in coral reefs using in situ and remote sensing data. Coral Reefs 19:259–269

    Google Scholar 

  • Andréfouët S, Payri C, Che LM, Hochberg EJ, Atkinson MJ (2003a) Airborne hyperspectral detection of microbial mats pigmentation in Rangiroa atoll (French Polynesia). Limnol Oceanogr 48:426–430

    Article  Google Scholar 

  • Andréfouët S, Kramer P, Torres-Pulliza D, Joyce KE, Hochberg EJ, Garza-Perez R, Mumby PJ, Riegl B, Yamano H, White WH, Zubia M, Brock JC, Phinn SR, Naseer A, Hatcher BG, Muller-Karger FE (2003b) Multi-sites evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens Environ 88:128–143

    Article  Google Scholar 

  • Ault TR, Johnson CR (1998a) Relationship between habitat and recruitment of 3 species of damselfishes (Pomacentridae) at Heron Reef, Great Barrier Reef. J Exp Mar Biol Ecol 223:145–166

    Article  Google Scholar 

  • Ault TR, Johnson CR (1998b) Spatially and temporally predictable fish communities on coral reefs. Ecol Monogr 68:25–50

    Google Scholar 

  • Beck MW, Heck KL, Able K, Childers DL, Eggleston DB, Gillanders B, Halpern B, Hays C, Hoshino K, Minello T, Orth R, Sheridan P, Weinstein M (2001) The identification, conservation and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641

    Article  Google Scholar 

  • Bellwood DR, Hughes T, Hoey AS (2006) Sleeping functional group drives coral-reef recovery. Curr Biol 16:2434–2439

    Article  PubMed  CAS  Google Scholar 

  • Binzenhöfer B, Schröder B, Strauss B, Biedermann R, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths- the example of Zygaena carniolica and Coenonympha arcania. Biol Cons 126:247–259

    Article  Google Scholar 

  • Bohnsack JA, Bannerot SP (1986) A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Tech Rep NMFS 41:1–15

    Google Scholar 

  • Breslow NE (1996) Generalized linear models: checking assumptions and strengthening conclusions. Journal of Statistics and Applications 8:23–41

    Google Scholar 

  • Brock J, Wright C, Clayton T, Nayegandhi A (2004) Optical rugosity of coral reefs in Biscayne National Park, Florida. Coral Reefs 23:48–59

    Article  Google Scholar 

  • Brown CA, Jackson GA, Holt SA, Holt GJ (2005) Spatial and temporal patterns in modeled particle transport to estuarine habitat with comparisons to larval fish settlement patterns. Estuar Coast Shelf Sci 64:33–46

    Article  Google Scholar 

  • Carassou L, Ponton D (2006) Spatio-temporal structure of pelagic larval and juvenile fish assemblages in coastal areas of New Caledonia, southwest Pacific. Mar Biol 150:697–711

    Article  Google Scholar 

  • Caselle JE (1999) Early post-settlement mortality in a coral reef fish and its effects on local population size. Ecol Monogr 69:177–194

    Article  Google Scholar 

  • Chittaro PM (2004) Fish-habitat associations across multiple spatial scales. Coral Reefs 23:235–244

    Article  Google Scholar 

  • Chittaro PM, Usseglio P, Sale PF (2005) Variation in fish density, assemblage composition and relative rates of predation among mangrove, seagrass and coral reef habitats. Environ Biol Fish 72:1–13

    Article  Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

    Google Scholar 

  • Clua E, Legendre P, Vigliola L, Magron F, Kulbicki M, Sarramegna S, Labrosse P, Galzin R (2006) Medium scale approach for improved assessment of coral reef fish habitat. J Exp Mar Biol Ecol 333:219–230

    Article  Google Scholar 

  • Cocheret de la Morinière E, Pollux BJA, Nagelkerken I, van der Velde G (2002) Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar Coast Shelf Sci 55:309–321

    Article  Google Scholar 

  • Codling EA, Hill NA, Pitchford JW, Simpson SD (2004) Random walk models for the movement and recruitment of reef fish larvae. Mar Ecol Prog Ser 279:215–224

    Article  Google Scholar 

  • Courboulès J, Manière R (1992) Apport de la télédétection à l’étude de la relation entre l’hydrodynamisme de surface et les récifs coralliens. Int J Remote Sens 13:1911–1923

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge

    Google Scholar 

  • Dean CB (1992) Testing for overdispersion in Poisson and binomial regression models. J Am Stat Assoc 87:451–457

    Article  Google Scholar 

  • Depczynski M, Bellwood DR (2004) Microhabitat utilisation patterns in cryptobenthic coral reef fish communities. Mar Biol 145:455–463

    Article  Google Scholar 

  • Doherty PJ (1991) Spatial and temporal patterns in recruitment. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic, London, pp 261–293

    Google Scholar 

  • Doherty PJ (2002) Variable replenishment and the dynamics of reef fish populations. In: Sale PF (ed) Coral reef fishes—dynamics and diversity in a complex ecosystem. Academic, London, pp 327–355

    Google Scholar 

  • Doherty PJ, Dufour V, Galzin R, Hixon MA, Meekan MG, Planes S (2004) High mortality during settlement is a population bottleneck for a tropical surgeonfish. Ecology 85:2422–2428

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Christianen MJA, Nagelkerken I, van der Velde G (2005) Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs. Mar Ecol Prog Ser 302:63–76

    Article  Google Scholar 

  • Douillet P, Ouillon S, Cordier E (2001) A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia. Coral Reefs 20:361–372

    Article  Google Scholar 

  • Findlay AM, Allen LG (2002) Temporal patterns of settlement in the temperate reef fish Paralabrax clathratus. Mar Ecol Prog Ser 238:237–248

    Article  Google Scholar 

  • Francis MP, Morrison MA, Leathwick J, Walsh C, Middleton C (2005) Predictive models of small fish presence and abundance in northern New Zealand harbours. Estuar Coast Shelf Sci 64:419–435

    Article  Google Scholar 

  • Gilbert A, Andréfouët S, Yan L, Remoissenet G (2006) The giant clam Tridacna maxima communities of three French Polynesia Islands: comparison of their population sizes and structures at early stages of their exploitation. ICES J Mar Sci 36:1–17

    Google Scholar 

  • Gilliers C, Le Pape O, Désaunay Y, Morin J, Guérault D, Amara R (2006) Are growth and density quantitative indicators of essential fish habitat quality? An application to the common sole Solea solea nursery grounds. Estuar Coast Shelf Sci 69:96–106

    Article  Google Scholar 

  • Grober-Dunsmore R, Frazer TK, Lindberg WJ, Beets J (2007) Reef fish and habitat relationships in a Caribbean landscape: the importance of reef context. Coral Reefs 26:201–216

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Harborne AP, Mumby PJ, Zychaluk K, Hedley J, Blackwell P (2006) Modeling the beta diversity of coral reefs. Ecology 87:2871–2881

    Article  PubMed  Google Scholar 

  • Hixon MA, Beets JP (1993) Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol Monogr 63:77–101

    Article  Google Scholar 

  • Holbrook SJ, Brooks AJ, Schmitt RJ (2002) Predictability of fish assemblages on coral patch reefs. Mar Freshw Res 53:181–188

    Article  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Jouon A, Douillet P, Ouillon S, Fraunie P (2006) Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model. Cont Shelf Res 26:1395–1415

    Article  Google Scholar 

  • Latimer A, Wu S, Gelfand AE, Silander JA (2006) Building statistical models to analyze species distribution. Ecol Appl 16:33–50

    Article  PubMed  Google Scholar 

  • Lecchini D, Nakamura Y, Grignon J, Tsuchiya M (2006) Evidence of density-independant mortality in a settling coral reef damselfish, Chromis viridis. Ichthyol Res 53:298–300

    Article  Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:553–564

    Article  Google Scholar 

  • Maritorena S (1996) Remote sensing of the water attenuation in coral reefs: a case study in French Polynesia. Int J Remote Sens 17:155–166

    Article  Google Scholar 

  • McClanahan TR, Polunin NVC, Done TJ (2002) Ecological states and the resilience of coral reefs. Conserv Ecol 6:2–18

    Google Scholar 

  • Mellin C, Ferraris J, Galzin R, Kulbicki M, Ponton D (2006) Diversity of coral reef fish assemblages: modelling of the species richness spectra from multi-scale environmental variables in the Tuamotu Archipelago (French Polynesia). Ecol Model 198:409–425

    Article  Google Scholar 

  • Miller RL, Castillo CED, McKee BA (2005) Remote sensing of coastal aquatic environments. Kluwer Academics Publishers, Dordrecht

    Google Scholar 

  • Mumby PJ, Hedley JD, Chisholm JRM, Clark CD, Ripley H, Jaubert J (2004) The cover of living and dead corals from airborne remote sensing. Coral Reefs 23:171–183

    Article  Google Scholar 

  • Myers N, Mittermeier R, Mittermeier CG, daFonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nagelkerken I, van der Velde G, Verberk WCEP, Dorenbosch M (2006) Segregation along multiple resource axes in a tropical seagrass fish community. Mar Ecol Prog Ser 308:79–89

    Article  Google Scholar 

  • Nelson JS (1984) Fishes of the world. Wiley, New York

    Google Scholar 

  • Parrish JD (1989) Fish communities of interacting shallow-water habitats in tropical oceanic regions. Mar Ecol Prog Ser 58:143–160

    Article  Google Scholar 

  • Pinazo C, Bujan S, Douillet P, Fichez R, Grenz C, Maurin A (2004) Impact of wind and freshwater inputs on phytoplankton biomass in the coral reef lagoon of New Caledonia during the summer cyclonic period: a coupled three-dimensional biogeochemical modeling approach. Coral Reefs 23:281–296

    Article  Google Scholar 

  • Pittman SJ, McAlpine CA, Pittman KM (2004) Linking fish and prawns to their environment: a hierarchical landscape approach. Mar Ecol Prog Ser 283:233–254

    Article  Google Scholar 

  • Pittman SJ, Christensen JD, Caldow C, Menza C, Monaco ME (2007) Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecol Model 204:9–21

    Article  Google Scholar 

  • Potts JM, Elith J (2006) Comparing species abundance models. Ecol Model 199:153–163

    Article  Google Scholar 

  • Randall JE (2005) Reef and shore fishes of the South Pacific- New Caledonia to Tahiti and the Pitcairns Islands. University of Hawaii Press, Honolulu

    Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Scheler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  PubMed  CAS  Google Scholar 

  • Robertson DR, Kaufmann KW (1998) Assessing early recruitment dynamics and its demographic consequences among tropical reef fishes: accommodating variation in recruitment seasonality and longevity. Aust J Ecol 23:226–233

    Article  Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criteria statistics. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Sale PF, Danilowicz BS, Doherty PJ, Williams DM (2005) The relation of microhabitat to variation in recruitment of young-of-year coral reef fishes. Bull Mar Sci 76:123–142

    Google Scholar 

  • Scharf FS, Manderson JP, Fabrizio MC (2006) The effects of seafloor habitat complexity on survival of juvenile fishes: species-specific interactions with structural refuge. J Exp Mar Biol Ecol 335:167–176

    Article  Google Scholar 

  • Sponaugle S, Lee T, Kourafalou V, Pinkard D (2005) Florida current frontal eddies and the settlement of coral reef fishes. Limnol Oceanogr 50:1033–1048

    Article  Google Scholar 

  • Sponaugle S, Grorud-Colvert K, Pinkard D (2006) Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar Ecol Prog Ser 308:1–15

    Article  Google Scholar 

  • Srinivasan M (2003) Depth distributions of coral reef fishes: the influence of micro-habitat structure, settlement, and post-settlement processes. Oecologia 137:76–84

    Article  PubMed  Google Scholar 

  • Van Horne B (1983) Density as a misleading indicator of habitat quality. J Wildl Manage 47:893–901

    Article  Google Scholar 

  • Wantiez L, Chateau O, Le Mouellic S (2006) Initial and mid-term impacts of cyclone Erica on coral reef fish communities and habitat in the south lagoon Marine Park of New Caledonia. J Mar Biol Assoc UK 86:1229–1236

    Article  Google Scholar 

  • Williams DM (1982) Patterns in the distribution of fish communities across the central Great Barrier Reef. Coral Reefs 1:35–42

    Article  Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biol 12:2220–2234

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by grants from IRD, from Ministère de l’Outre-Mer and from the Programme d’Evaluation des Ressources Marines de la Zone Economique Exclusive de Nouvelle-Calédonie (ZoNéCo). We are very grateful to Gérard Mou-Tham for his invaluable field assistance. Thanks to Mr Andrew Harris for his help in editing the text. We also wish to thank Sean Connolly for his advice on the methods used to assess spatial and temporal autocorrelation and two anonymous reviewers for their comments and detailed suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mellin.

Additional information

Communicated by Ecology Editor P.J. Mumby.

Appendix

Appendix

Tables 3 and 4.

Table 3 Fish species observed as juvenile during underwater visual census. Smax: maximum species length (in cm). Families are ordered according to Nelson (1984). For authorities see Randall (2005)
Table 4 Fish species observed as juvenile during underwater visual census. Smax: maximum species length (in cm). Families are ordered according to Nelson (1984). For authorities see Randall (2005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellin, C., Andréfouët, S. & Ponton, D. Spatial predictability of juvenile fish species richness and abundance in a coral reef environment. Coral Reefs 26, 895–907 (2007). https://doi.org/10.1007/s00338-007-0281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-007-0281-3

Keywords

Navigation