Skip to main content

Advertisement

Log in

Living on the edge: high-latitude Porites carbonate production under temperate eutrophic conditions

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Non-framework building high-latitude coral communities have recently received increased attention as a result of their potential to act as refugia during global change, as proxies for such change and for testing the environmental tolerance limits of various species of coral. In this study, we report on high-resolution in situ measured environmental factors influencing the development of monospecific (Porites panamensis) non-framework building coral communities and the resulting coral-derived carbonate sediment production in the northern Gulf of California, Mexico (Bahía de Los Angeles, 29°N, 113°E). Half-hourly measurements of temperature and chlorophyll a (a nutrient proxy) for a 1-year period indicate temperature extremes ranging from 14°C to 30°C, and average chlorophyll a values of 2.2 mg Chl a/m3 (eutrophic). Even though P. panamensis only occur as small massive and encrusting colonies, they nonetheless show a significant carbonate sediment production potential (0.14 kg CaCO3/m2/year). A calculation of carbonate production rates vs amount of coral found in the sediment shows that this high-latitude community must have persisted for an extended period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Betzler C, Brachert TC, Nebelsick J (1997) The warm temperate carbonate province: a review of the facies, zonations, and delimitations. Courier Forschungsinstitut Senckenberg 201:83–99

    Google Scholar 

  • Buddemeier RW, Smith SV (1999) Coral adaptation and acclimatization: A most ingenious paradox. Am Zool 39:1–9

    Google Scholar 

  • Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371

    Google Scholar 

  • Crossland CJ (1987) Dissolved nutrients in coral reef waters. In: Barnes DJ (ed) Perspectives on coral reefs. The Australian Institute of Marine Science, Townsville, pp 56–68

    Google Scholar 

  • DiSalvo LH, Randall JE, Cea A (1988) Ecological reconnaissance of the Easter Island sublittoral marine environment. Nat Geogr Res 4:451–473

    Google Scholar 

  • Esteban M (1996) An overview of Miocene reefs from Mediterranean areas: general trends and facies models. In: Franseen EK et al (eds) Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions. SEPM Conc Sed Paleontol 5:3–53

  • Geister J (1983) Holocene West Indian coral reefs Geomorphology, ecology, and facies. Facies 9:173–284

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Global Change Biol 2:495–509

    Article  Google Scholar 

  • Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–560

    Article  Google Scholar 

  • Halfar J, Mutti M (2005) Global dominance of coralline red-algal facies: a response to Miocene oceanographic events. Geology 33(6):481–484

    Article  Google Scholar 

  • Halfar J, Godinez-Orta L, Mutti M, Valdez-Holguin J, Borges J (2004) Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology 32(3):213–216

    Article  CAS  Google Scholar 

  • Hallock P (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2:457–471

    Article  Google Scholar 

  • Hallock P (1988) The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr, Palaeoclimatol, Palaeoecol 63:275–291

    Article  Google Scholar 

  • Hallock P (2001) Coral reefs, carbonate sediments, nutrients, and global change. In: Stanley GD (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum, New York, pp 387–427

    Google Scholar 

  • Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1:389–398

    Article  Google Scholar 

  • Harii S, Omori M, Yamakawa H, Koike Y (2001) Sexual reproduction and larval settlement of the zooxanthellate coral Alviopora japonica Eguchi at high latitudes. Coral Reefs 20:19–24

    Article  Google Scholar 

  • Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 18:281–291

    Article  Google Scholar 

  • James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke JAD (eds) Cool-water carbonates, SEPM Spec Publ, vol 56, Tulsa, Oklahoma, pp 1–22

  • Kan H, Hori N, Nakashima Y, Ichikawa K (1995) The evolution of narrow reef flats at high-latitude in the Ryukyu Islands. Coral Reefs 14:123–130

    Article  Google Scholar 

  • Kinsman DJJ (1964) Reef coral tolerance of high temperatures and salinities. Nature 202:1280–1282

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  PubMed  Google Scholar 

  • Lüning K (1990) Seaweeds Their environment, biogeography, and ecophysiology. John Wiley & Sons, Chichester, pp 589

    Google Scholar 

  • Macintyre IG (2003) A classic marginal coral environment: tropical coral patches off North Carolina, USA. Coral Reefs 22:474

    Article  Google Scholar 

  • Moyer RP, Riegl B, Banks K, Dodge RE (2003) Spatial patterns and ecology of benthic communities on a high-latitude South Florida (Broward County, USA) reef system. Coral Reefs 22:447–464

    Article  Google Scholar 

  • Nelson CS (1988) An introductory perspective on non-tropical shelf carbonates. Sediment Geol 60:3–12

    Article  Google Scholar 

  • Perry CT (2003) Coral reefs in a high-latitude, siliciclastic barrier island setting: reef framework and sediment production at Inhaca Island, southern Mozambique. Coral Reefs 22:458–506

    Google Scholar 

  • Perry CT, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427–432

    Article  Google Scholar 

  • Precht WF, Aronson RB (2003) Climate flickers and range shifts of corals. Geol Soc Am Annual Meeting, Seattle (Sep. 2003), Abstracts with Programs, vol 35, no. 6, p 84

  • Ramsay PJ, Cooper JAG, Wright CI, Mason TR (1989) The occurrence and formation of ladderback ripples in subtidal, shallow-marine sands, Zululand, South Africa. Mar Geol 86:229–235

    Article  Google Scholar 

  • ReefBase (1996) ReefBase: a global database on coral reefs and their resources. Ver. 1.0. CD-ROM, ICLARM, Manila

  • Reyes-Bonilla H (1990) Distribucion, riqueza especifica, aspectos biogeograficos y taxonomicos de los corales hermatipicos del Golfo de California. Unpublished Bachelor’s thesis. Universidad Autonoma de Baja California Sur, La Paz, B.C.S., Mexico, pp 127

  • Reyes-Bonilla H (1993) Biogeografia y ecología de los corales hermatipicos (Anthozoa: Scleractinia) del Pacífico de México. In: Salazar-Vallejo SI, González NE (eds) Biodiversidad Marina y Costera de México. Com. Nat. Biodiversidad y CIQRO, México, pp 207–222

    Google Scholar 

  • Reyes-Bonilla H, Calderon-Aguilera EL (1994) Parametros poblacionales de Porites panamensis (Anthozoa: Scleractinia). Rev Biol Trop 42:121–128

    Google Scholar 

  • Reyes-Bonilla H, López-Pérez A (1998) Biogeographía de los corales pétreos (Scleractinia) del Pacífico de Mexico. Ciencias Marinas 24:211–224

    Google Scholar 

  • Riegl B, Schleyer MH, Cook PJ, Branch GM (1995) Structure of Africa’s southernmost coral communities. Bull Mar Sci 56:676–691

    Google Scholar 

  • Riegl B, Piller WE (1997) Distribution and environmental control of coral assemblages in Northern Safaga Bay (Red Sea, Egypt). Facies 36:141–162

    Article  Google Scholar 

  • Riegl B, Piller WE (2000) Upwelling areas as possible refugia for reefs in times of rising SST? Further evidence from the Carribean and Indian Oceans. Proc 9th Int Coral Reef Symp, vol 1, pp 315–320

  • Riegl B (2001) Inhibition of reef framework by frequent disturbance: examples from the Arabian Gulf, South Africa, and the Cayman Islands. Palaeogeogr, Palaeoclimatol, Palaeoecol 175:79–101

    Article  Google Scholar 

  • Riegl B (2003) Climate change and coral reefs: different effects in two high-latitude areas (Arabian Gulf, South Africa). Coral Reefs 22:433–446

    Article  Google Scholar 

  • Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. Int J Earth Sci 92:520–531

    Article  Google Scholar 

  • Schiel DR, Kingsford MJ, Choat JH (1986) Depth distribution and abundance of benthic organisms and fishes at the subtropical Kermadec Islands. N Z J Mar Freshwater Res 20:521–535

    Article  Google Scholar 

  • Smith SV, Buddemeier RW (1992) Global change and coral reef ecosystems. Annu Rev Ecol Syst 23:89–118

    Article  Google Scholar 

  • Squires DF (1959) Results of the Puritan-American Museum of Natural History expedition to western Mexico—7. Corals and Coral Reefs in the Gulf of California. Bull Am Mus Nat His 118:371–431

    Google Scholar 

  • Strasser M (2004) Akustische Kartierung und Sedimentologie im nördlichen Golf von Kalifornien, Mexiko mit besonderer Betrachtung von Bryozoenvergesellschaftungen. Diploma Thesis, Universität Stuttgart, Stuttgart, pp 97

  • Tomascik T, Sander F (1985) Effects of eutrophication on reef-building corals. Mar Biol 87:143–155

    Article  Google Scholar 

  • Van Woesik R, Done TJ (1997) Coral communities and reef growth in the southern Great Barrier Reef. Coral Reefs 16:103–115

    Article  Google Scholar 

  • Vargas-Angel B, Thomas JD, Hoke SM (2003) High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22:465–473

    Article  Google Scholar 

  • Veron JEN (1995) Corals in space and time. The biogeography and evolution of the Scleractinia. Cornell University Press, Cornell pp 318

    Google Scholar 

  • Yamano H, Hori K, Yamauchi M, Yamagawa O, Ohmura A (2001) Highest latitude coral reef at Iki Island, Japan. Coral Reefs 20:9–12

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Volkswagen Stiftung, Federal Republic of Germany (grant I/77446). Permission to collect samples was granted by SEMARNAT (permit 300702-613-03). Thanks to V. Karius, I. Ottenbacher, and J. Schneider for taking coral radiographs, to J. Hinosa for analyzing chlorophyll a in water samples. We thank two anonymous reviewers and P. Swart for helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Halfar.

Additional information

Communicated by Geological Editor P.K. Swart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halfar, J., Godinez-Orta, L., Riegl, B. et al. Living on the edge: high-latitude Porites carbonate production under temperate eutrophic conditions. Coral Reefs 24, 582–592 (2005). https://doi.org/10.1007/s00338-005-0029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-005-0029-x

Keywords

Navigation