Skip to main content
Log in

Schmerz aus Muskeln und anderen tiefen somatischen Geweben

Pain from muscle and other deep somatic tissues

  • Übersichten
  • Published:
Manuelle Medizin Aims and scope Submit manuscript

Zusammenfassung

Alle tiefen somatischen Gewebe sind intensiv nozizeptiv und propriozetiv innerviert. Viele dieser Sensoren sind im Normalzustand nur auf starke mechanische Reize schmerzsensibel, können aber im Falle von persistierenden Schmerzreizen oder von lokoregionären Entzündungsvorgängen im Rahmen der Sensibilisierung niederschwellig werden und ihren Charakter ändern. Daher sind der Schmerz und die nozireaktiven Veränderungen stark vom Sensibilisierungsgrad und auch von der zeitlichen Dauer eines Reizes oder der Dysfunktion abhängig. Zwar existieren einige Unterschiede in der Anlage von Gelenk- und Muskelafferenzen, generell gibt es aber keine gewebespezifischen Rezeptoren und keine spezifische spinale bzw. zentrale Verarbeitung. In diesem Sinne „verhalten“ sich die verschiedenen tiefen somatischen Afferenzen nicht unterschiedlich. Die afferente multisensible Konvergenz der ersten Neuronen aller tiefen somatischen Afferenzen am spinalen Hinterhorn führt zum Reizsummenprinzip. Dies bedeutet, dass verschiedene Afferenzen summativ eine verstärkte motorische Reaktion und Schmerzempfindung zur Folge haben können. Gleichzeitig wird die zentrale Verarbeitung bezüglich Reizquellen (Nozigeneratoren) unspezifisch. Konvergenz bedeutet immer auch Informationsverlust bezüglich Diskriminierbarkeit. Die zentralen reflektorischen Verarbeitungsmuster wie auch der Muskeltonus sind komplexen Mechanismen mit multiplen spinalen und supraspinalen Einflüssen unterworfen. Es gibt keinen isolierten γ-gesteuerten Muskeltonus. Der „psychomotorische Link“ funktioniert über die Formatio reticularis, die retikulospinalen Bahnen wirken über den spinalen Interneuronenpool auf die α-/γ-Motoneuronen-Aktivität, die immer als α-/γ-Koaktivierung erfolgt.

Abstract

All deep somatic tissues are intensively innervated by nociceptive and proprioceptive fibers. Under normal conditions many of these sensors are only sensitive to pain by strong mechanical stimuli, but the threshold can be lowered and the character changed in cases of persistent pain stimuli or locoregional inflammatory processes due to sensitization. Therefore, the pain and nociceptive alterations are strongly dependant on the degree of sensitization and also on the duration of a stimulus or the dysfunction. There are some differences in the predisposition of joint and muscle afferent fibers but generally there are no tissue-specific receptors and no specific spinal or central processing. In this sense the various deep somatic afferent fibers do not“behave” differently. The afferent multisensitive convergence of the primary neurons of all deep somatic afferent fibers in the posterior spinal horn leads to the stimulus summation principle. This means that different afferent impulses can result in a stronger motor reaction and pain perception due to summation. Simultaneously, the central processing with respect to the source of the stimuli (nocigenerators) becomes unspecific. Convergence always means loss of information with respect to discrimination. The central reflex processing pattern and also muscle tonus are complex mechanisms subject to multiple spinal and supraspinal influences. There is no isolated γ-driven muscle tonus. The „psychomotor link“ functions via the reticular formation and the reticulospinal tracts function via the spinal interneuronal pool on the α-/γ-motor neuron activity, which is always by α-/γ-coactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Arendt-Nielsen L, Laursen RJ, Drewes AM (2000) Referred pain as an indicator for neural plasticity. In: Sandkühler J, Bromm B, Gebhart GF (eds) Nervous system plasticity and chronic pain. Prog Brain Res, vol 129. Elsevier, Amsterdam, pp 343–356

  2. Arendt-Nielsen L, Nie H, Laursen MB et al (2010) Sensitization in patients with painful knee osteoarthritis. Pain 149:573–581

    Article  PubMed  Google Scholar 

  3. Basmajian JV, Nyberg R (1993) Rational manual therapies. William & Wilkins, Baltimore

  4. Benarroch E (2012) Periaqueductal gray: an interface for behavioral control. Neurology 78:210–217

    Article  PubMed  Google Scholar 

  5. Blair S, Djupsöbacka M et al (2003) Neuromuscular mechanisms behind chronic work-related myalgias: an overview. In: Johansson H, Windhorst U, Djupsöbacka M et al (eds) Chronic work-related myalgia. Gävle University Press, Gävle, pp 5–46

  6. Böhni Ulrich W, Lauper M, Locher H (2014) Manuelle Medizin 1: Fehlfunktion und Schmerz am Bewegungsorgan verstehen und behandeln. Thieme, Stuttgart

  7. Crameri RM, Aagaard P, Qvortrup K et al (2007) Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol 583:365–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dommerholt J, Bron C, Franssen J (2006) Myofacial trigger points: an evidence-informed review. J Man Manip Ther 14:203–221

    Article  Google Scholar 

  9. Ferrell WR, Wood L, Baxendale RH (1988) The effect of acute joint inflammation on flexion reflex excitability in the decerebrate, low spinal cat. Q J Exp Physiol 373:353–365

    Google Scholar 

  10. Freiwald J (2009) Optimales Dehnen: Sport – Prävention – Rehabilitation. Spitta, Balingen

  11. Graven-Nielsen T (2010) Reorganized motor control due to muscle pain. In: Mense S, Gerwin R (eds) Muscle pain – understanding the mechanisms. Springer, Berlin Heidelberg New York, pp 251–268

  12. Hägg GM (1991) Static work load and occupational myalgia – a new explanation model. In: Anderson P, Hobart D, Danoff J (eds) Electromyographical kinesiology. Elsevier, Amsterdam, pp 141–144

  13. Hägg GM (2003) The cinderella hypothesis. In: Johansson H, Windhorst U, Djupsöbacka M et al (eds) Chronic work-related myalgia. Gävle University Press, Gävle, pp 127–132

  14. Headley BJ (1990) EMG and myofascial pain. Clin Manag 10:43–46

    Google Scholar 

  15. Henneman E, Somjen G, Carpenter DO (1965) Excitability and inhibitability of motoneurons of different sizes. J Neurophysiol 28:599–620

    CAS  PubMed  Google Scholar 

  16. Hoheisel U, Mense S, Simons DG, Yu XM (1993) Appearance of new receptive fields in rat dorsal horn neurons following noxious stimulation of skeletal muscle: a model for referral of muscle pain? Neurosci Lett 153:9–12

    Article  CAS  PubMed  Google Scholar 

  17. Hoheisel U, Koch K, Mense S (1994) Functional reorganization in the rat dorsal horn during an experimental myositis. Pain 59:111–118

    Article  CAS  PubMed  Google Scholar 

  18. Hoheisel U, Unger T, Mense S (2005) Excitatory and modulatory effects of inflammatory cytokines and neurotrophins on mechanosensitive group IV muscle afferents in the rat. Pain 114:168–176

    Article  CAS  PubMed  Google Scholar 

  19. Hoheisel U, Unger T, Mense S (2007) Sensitization of rat dorsal horn neurons by NGF-induced subthreshold potentials and low-frequency activation. A study employing intracellular recordings in vivo. Brain Res 1169:34–43

    Article  CAS  PubMed  Google Scholar 

  20. Hostens I, Ramon H (2005) Assessment of muscle fatigue in low level monotonous task performance during car driving. J Electromyogr Kinesiol 15:266–274

    Article  CAS  PubMed  Google Scholar 

  21. Krauspe R, Schmidt M, Schaible H-G (1992) Sensory innervation of the anterior cruciate ligament: an electrophysiological study of the response properties of single identified mechanoreceptors in the cat. J Joint Bone Surg 7:390–397

    Google Scholar 

  22. Kumazawa T, Mizumura K (1976) The polymodal C-fiber receptor in the muscle of the dog. Brain Res 101:589–593

    Article  CAS  PubMed  Google Scholar 

  23. Kumazawa T, Mizumura K (1977) Thin-fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol 273:179–194

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Lucas KR, Polus B, Rich (2004) Latent myofascial trigger points: their effects on muscle activation and movement efficiency. J Bodyw Mov Ther 8:160–166

    Article  Google Scholar 

  25. Lund JP, Donga R, Widmer CG, Stohler CS (1991) The pain-adaptation model: a discussion of the relationship between chronic musculoskeletal pain and motor activity. Can J Physiol Pharmacol 69:683

    Article  CAS  PubMed  Google Scholar 

  26. Malm C, Sjödin TL, Sjöberg B (2004) Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. J Physiol 556:983–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. McHugh MP, Connolly DAJ, Easton RG, Gleim GW (1999) Exercise-induced muscle damage and potential mechanisms for the repeated out effect. Sports Med 27(3):151–170

    Article  Google Scholar 

  28. Mense S, Stahnke M (1983) Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. J Physiol 342:383–397

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Mense S (1997) Pathophysiologic basis of muscle pain syndromes. Myofasc pain. Update in diagnosis and treatment. Phys Med Rehabil Clin North Am 82:23–53

    Google Scholar 

  30. Mense S (1999) Neurobiologische Grundlagen von Muskelschmerz. Schmerz 13:3–17

    Article  CAS  PubMed  Google Scholar 

  31. Mense S (2007) Sensorische Nervenendigungen, Mechanorezeptoren. In: Benninghoff A, Drenckhahn D (Hrsg) Anatomie. Bd 2, 16. Aufl. Urban & Fischer, München

  32. Mense S (2009) Protokoll der Wissenschaftstagung der European Scientific Society of Manual Medicine ESSOMM, Bad Horn (beim Verfasser)

  33. Mense S (2009) Algesic agents exciting muscle nociceptors. Exp Brain Res 196:89–100

    Article  CAS  PubMed  Google Scholar 

  34. Mense S (2010) Muscle pain: understanding the mechanisms. Springer, Berlin Heidelberg New York

  35. Mense S (2013) Basics mechanisms of muscle pain. In: Koltzenburg M, McMahon S, Tracey I, Turk D (eds) Textbook of pain, 6. edn. Saunders, Philadelphia

  36. Mitchell LF Jr (1995, 1998, 1999) The muscle energy manual. Vol 1 – 3. MET Press Michigan, East Lancing

  37. Murase S, Terazawa E, Queme F, Mizumura K et al (2010) Bradykinin and nerve growth factor play pivotal roles in muscular mechanical hyperalgesia after exercise (delayed-onset muscle soreness). J Neurosci 30:3752–3761

    Article  CAS  PubMed  Google Scholar 

  38. Myers JB, Hwang JH, Pasquale MR et al (2009) Rotator cuff coactivation ratios in participants with subacromial impingement syndrome. J Sci Med Sport 12:603–608

    Article  PubMed  Google Scholar 

  39. Neugebauer V, Lücke T, Schaible H-G (1993) N -Methyl- d -aspartate [NMDA] and non-NMDA receptor antagonists block the hyperexcitability of dorsal horn neurons during development of acute arthritis in rat’s knee joint. J Neurophysiol 70:1365–1377

    CAS  PubMed  Google Scholar 

  40. Peck C, Murray G, Gerzina T (2008) How does pain affect jaw muscle activity? The integrated pain adaptation model. Aust Dent J 53:201–207

    Article  CAS  PubMed  Google Scholar 

  41. Schaible H-G, Grubb BD (1993) Afferent and spinal mechanisms of joint pain. Pain 55:5–54

    Article  CAS  PubMed  Google Scholar 

  42. Schaible H-G, Schmidt RF (1988) Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol 60:2180–2195

    CAS  PubMed  Google Scholar 

  43. Schaible HG (2013) Joint pain – basic mechanisms. In: Koltzenburg M, McMahon S, Tracey I, Turk D (eds) Textbook of pain, 6. edn. Saunders, Philadelphia

  44. Svensson P, Cairns BE, Wang K et al (2003) Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia. Pain 104:241–247

    Article  CAS  PubMed  Google Scholar 

  45. Hu J, Milenkovic N, Lewin GR (2006) The high threshold mechanotransducer: a status report. Pain 120:3–7

    Article  PubMed  Google Scholar 

  46. Travell J, Rinzler S, Herman M (1942) Pain and disability of the shoulder and arm. Treatment by intramuscular infiltration with procain hydrochloride. JAMA 120:417–422

    Article  Google Scholar 

  47. Treede RD (2010) Das somatosensorische System. In: Schmidt R (Hrsg) Physiologie des Menschen, 31. Aufl. Springer, Berlin Heidelberg New York

  48. Yu XM, Sessle BJ, Vernon H et al (1995) Effects of inflammatory irritant application to the rat temporomandibular joint on jaw and neck muscle activity. Pain 60:143–149

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. U. Böhni und R. Gautschi geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Böhni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhni, U., Gautschi, R. Schmerz aus Muskeln und anderen tiefen somatischen Geweben. Manuelle Medizin 52, 190–202 (2014). https://doi.org/10.1007/s00337-014-1109-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00337-014-1109-1

Schlüsselwörter

Keywords

Navigation