Skip to main content
Log in

Pig genome analysis: differential distribution of SINE and LINE sequences is less pronounced than in the human and mouse genomes

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The distribution of SINE and LINE sequences in the pig genome was examined by fluorescence in situ hybridization (FISH), interspersed repeat PCR, and restriction analysis of high molecular weight DNA. FISH revealed a largely uniform hybridization to the euchromatic chromosome regions with both interspersed repeats, although a bias toward the G-bands was observed for the LINE probe. Southern blots of inter-SINE and inter-LINE PCR products showed strong hybridization to LINE and SINE probes, respectively. High molecular weight DNA derived from a pig × hamster hybrid cell line was cut with a panel of G + C and A + T rich rare cutter restriction enzymes, then run on a pulsed field gel and Southern blotted. Sequential hybridization with SINE and LINE probes showed that SINE hybridization was to relatively low molecular weight fragments with the G + C rich enzymes, whereas the LINE probe gave hybridization to significantly larger fragments produced by these enzymes. DNA samples digested with A + T rich enzymes gave essentially similar patterns with SINE and LINE probes. We conclude that the pattern of differential distribution of SINEs and LINEs, which has been described in man and mouse, does exist in the pig but is much less pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardi, G. (1993). The vertebrate genome: isochores and chromosomal bands. In Chromosomes Today, Vol. 11, A.T. Sumner, A.C. Chandley, eds. (London: Chapman & Hall), pp. 49–60.

    CAS  Google Scholar 

  • Bickmore, W.A., Sumner, A.T. (1989). Mammalian chromosome banding—an expression of genome organization. Trends Genet. 5, 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, A.L., Ballard, S.G., Ward, D.C. (1990). Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 87, 7757–7761.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T.L., Manuelidis, L. (1989). SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Committee for the standardized karyotype of the domestic pig (1988). Standard karyotype of the domestic pig. Hereditas 109, 151–157.

    Google Scholar 

  • Frengen, E., Thomsen, P.D., Kristensen, T., Kran, S., Miller, J.R., Davies, W. (1991). Porcine SINEs: characterization and use in species-specific amplification. Genomics 10, 949–956.

    Article  PubMed  CAS  Google Scholar 

  • Jantsch, M., Hamilton, B., Mayr, B., Schweizer, D. (1990). Meiotic chromosome behavior reflects levels of sequence divergence in Sus scrofa domestica satellite DNA. Chromosoma 99, 330–335.

    Article  PubMed  CAS  Google Scholar 

  • Koch, J.E., Kølvraa, S., Petersen, K.B., Gregersen, N., Bolund, L. (1989). Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma 98, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Korenberg, J.R., Rykowski, M.C. (1988). Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53, 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Ledbetter, S.A., Nelson, D.L., Warren, S.T., Ledbetter, D.H. (1990). Rapid isolation of DNA probes within specific chromosome regions by interspersed repetitive sequence polymerase chain reaction. Genomics 6, 475–481.

    Article  PubMed  CAS  Google Scholar 

  • Lemieux, N., Dutrillaux, B., Viegas-Péquignot, E. (1992). A simple method for simultaneous R- or G-banding and fluorescence in situ hybridization of small single-copy genes. Cytogenet. Cell Genet. 59, 311–312.

    Article  CAS  Google Scholar 

  • Lo, Y.D., Mehal, W.Z., Flemming, K.A. (1990). Incorporation of biotiny-lated dUTP. In PCR protocols. A Guide to Methods and Applications, M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds. (San Diego: Academic Press), pp. 113–118.

    Google Scholar 

  • Miller, J.R. (1994). Use of porcine interspersed repeat sequences in PCR-mediated genotyping. Mamm. Genome 5, 629–632.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.R., Archibald, A.L. (1993). 5′ and 3′ SINE-PCR allows genotyping of pig families without cloning and sequencing steps. Mamm. Genome 4, 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.R., Hindkjær, J., Thomsen, P.D. (1993). A chromosomal basis for the differential organization of a porcine centromere-specific repeat. Cytogenet. Cell Genet. 62, 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Poustka, A., Pohl, T.M., Barlow, D.P., Frischauf, A.M., Lehrach, H. (1987). Construction and use of human chromosome jumping libraries from Not I-digested DNA. Nature 325, 353–355.

    Article  PubMed  CAS  Google Scholar 

  • Sainz, J., Pevny, L., Wu, Y., Cantor, C.R., Smith, C.L. (1992). Distribution of interspersed repeats (Alu and Kpn) on NotI restriction fragments of human chromosome 21. Proc. Natl. Acad. Sci. USA 89, 1080–1084.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Schmitz, A., Chaput, B., Fouchet, P., Guilly, M.N., Frelat, G., Vaiman, M. (1992). Swine chromosomal DNA quantification by bivariate flow karyotyping and karyotype interpretation. Cytometry 13, 703–710.

    Article  PubMed  CAS  Google Scholar 

  • Singer, D.S., Parent, L.J., Ehrlich, R. (1987). Identification and DNA sequence of an interspersed repetitive DNA element in the genome of the miniature swine. Nucleic Acids Res. 15, 2780.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen, P.D., Fredholm, M., Christensen, K., Schwerin, M. (1990). Assignment of the porcine growth hormone gene to chromosome 12. Cytogenet. Cell Genet. 54, 92–94.

    Article  PubMed  CAS  Google Scholar 

  • Waye, J.S., Willard, H.F. (1989). Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc. Natl. Acad. Sci. USA 86, 6250–6254.

    Article  PubMed  CAS  Google Scholar 

  • Yasue, H., Takahashi, H., Awata, T., Popescu, P.C. (1991). Uneven distribution of short interspersed repetitive sequence, PRE-1, on swine chromosomes. Cell Struct. Funct. 16, 475–479.

    Article  PubMed  CAS  Google Scholar 

  • Yoshiura, K.-i., Kubota, T., Soejima, H., Tamura, T., Izumikawa, Y., Niikawa, N., Jinno, Y. (1994). A comparison of GC content and the proportion of Alu/KpnI-repetitive sequences in a single dark- and light-band region from a human chromosome. Genomics 20, 243–248.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, P.D., Miller, J.R. Pig genome analysis: differential distribution of SINE and LINE sequences is less pronounced than in the human and mouse genomes. Mammalian Genome 7, 42–46 (1996). https://doi.org/10.1007/s003359900010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900010

Keywords

Navigation