Skip to main content
Log in

A genetic map of Peromyscus with chromosomal assignment of linkage groups (a Peromyscus genetic map)

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The rodent genus Peromyscus is the most numerous and species-rich mammalian group in North America. The naturally occurring diversity within this genus allows opportunities to investigate the genetic basis of adaptation, monogamy, behavioral and physiological phenotypes, growth control, genomic imprinting, and disease processes. Increased genomic resources including a high quality genetic map are needed to capitalize on these opportunities. We produced interspecific hybrids between the prairie deer mouse (P. maniculatus bairdii) and the oldfield mouse (P. polionotus) and scored meiotic recombination events in backcross progeny. A genetic map was constructed by genotyping of backcross progeny at 185 gene-based and 155 microsatellite markers representing all autosomes and the X-chromosome. Comparison of the constructed genetic map with the molecular maps of Mus and Rattus and consideration of previous results from interspecific reciprocal whole chromosome painting allowed most linkage groups to be unambiguously assigned to specific Peromyscus chromosomes. Based on genomic comparisons, this Peromyscus genetic map covers ~83 % of the Rattus genome and 79 % of the Mus genome. This map supports previous results that the Peromyscus genome is more similar to Rattus than Mus. For example, coverage of the 20 Rattus autosomes and the X-chromosome is accomplished with only 28 segments of the Peromyscus map, but coverage of the 19 Mus autosomes and the X-chromosome requires 40 chromosomal segments of the Peromyscus map. Furthermore, a single Peromyscus linkage group corresponds to about 91 % of the rat and only 76 % of the mouse X-chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JF, Johnson RC, Magnarelli LA, Hyde FW, Andreadis TG (1987) New infectious spirochete isolated from short-tailed shrews and white-footed mice. J Clin Microbiol 25:1490–1494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–840

    Article  CAS  PubMed  Google Scholar 

  • Bester-Meredith JK, Marler CA (2003) The association between male offspring aggression and paternal and maternal behavior of Peromyscus mice. Ethology 109:797–808

    Article  Google Scholar 

  • Brown DM, Matise TC, Koike G, Simon JS, Winer ES, Zangen S, McLaughlin MG, Shiozawa M, Atkinson OS, Hudson JR Jr, Chakravarti A, Lander ES, Jacob HJ (1998) An integrated genetic linkage map of the laboratory rat. Mamm Genome 9:521–530

    Article  CAS  PubMed  Google Scholar 

  • Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, Brockmann GA, Wergedal JE, Bult C, Paigen B, Flint J, Tsaih SW, Churchill GA, Broman KW (2009) A new standard genetic map for the laboratory mouse. Genetics 182:1335–1344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Cancer 12:499–510

    Article  CAS  Google Scholar 

  • Dawson WD, Lake CE, Schumpert SS (1988) Inheritance of burrow building in Peromyscus. Behav Genet 18:371–382

    Article  CAS  PubMed  Google Scholar 

  • Dawson WD, Young SR, Wang Z, Liu LW, Greenbaum IF, Davis LM, Hall BK (1999) Mus and Peromyscus chromosome homology established by FISH with three mouse paint probes. Mamm Genome 10:730–733

    Article  CAS  PubMed  Google Scholar 

  • Dewey MJ, Dawson WD (2001) Deer mice: “The Drosophila of North American mammalogy”. Genesis 29:105–109

    Google Scholar 

  • Duselis AR, Vrana PB (2010) Aberrant growth and pattern formation in Peromyscus hybrid placental development. Biol Reprod 83:988–996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foltz DW (1981) Genetic evidence for long-term monogamy in a small rodent, Peromyscus polionotus. Am Nat 117:665–675

    Google Scholar 

  • Glenn JL, Chen CF, Lewandowski A, Cheng CH, Ramsdell CM, Bullard-Dillard R, Chen J, Dewey MJ, Glenn TC (2008) Expressed sequence tags from Peromyscus testis and placenta tissue: analysis, annotation, and utility for mapping. BMC Genomics 9:300

    Article  PubMed Central  PubMed  Google Scholar 

  • Greenbaum IF, Baker RJ (1978) Determination of the primitive karyotype for Peromyscus. J Mammalogy 59:820–834

    Article  CAS  Google Scholar 

  • Greenbaum IF, Gunn SJ, Smith SA, McAllister BF, Hale DW, Baker RJ, Engstrom MD, Hamilton MJ, Modi WS, Robbins LW, Rogers DS, Ward OG, WD D, Elder FFB, Lee MR, Pathak S, Stangle FBJ (1994) Cytogenetic nomenclature of deer mice, Peromyscus (Rogentia): revision and review of the standardized karyotype. Cytogenet Cell Genet 66:181–195

    Article  CAS  PubMed  Google Scholar 

  • Hjelle G, Krolikowski J, Torrez-Martinez N, Chavez-Giles F, Vanner C, Laposata E (1995) Phylogenetically distinct hantavirus implicated in a case of hantavirus pulmonary syndrome in the northeastern United States. J Med Virol 46:21–27

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313:101–104

    Article  CAS  PubMed  Google Scholar 

  • Jasarevic E, Sieli PT, Twellman EE, Welsh THJ, Schachtman TR, Roberts RM, Geary DC, Rosenfeld CS (2011) Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A. Proc Natl Acad Sci USA 108:11715–11720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korff S, Stein DJ, Harvey BH (2008) Stereotypic behaviour in the deer mouse: pharmacological validation and relevance for obsessive compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 32:348–355

    Article  CAS  PubMed  Google Scholar 

  • Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE (2009) On the origin and spread of an adaptive allele in deer mice. Science 325:1095–1098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loschiavo M, Nguyen QK, Duselis AR, Vrana PB (2007) Mapping and identification of candidate loci responsible for Peromyscus hybrid overgrowth. Mamm Genome 18:75–85

    Article  PubMed Central  PubMed  Google Scholar 

  • Magnarelli LA, Anderson JF, Hyland KE, Fish D, Mcaninch JB (1988) Serologic analyses of Peromyscus leucopus, a rodent reservoir for Borrelia burgdorferi, in Northeastern United States. J Clin Microbiol 26:1138–1141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Martin LB, Navara KJ, Weil ZM, Nelson RJ (2007) Immunological memory is compromised by food restriction in deer mice Peromyscus maniculatus. Am J Physiol Regul Integr Comp Physiol 292:R316–R320

    Article  CAS  PubMed  Google Scholar 

  • Martin LB, Weil ZM, Nelson RJ (2008a) Fever and sickness behaviour vary among congeneric rodents. Funct Ecol 22:68–77

    Google Scholar 

  • Martin LBn, Navara KJ, Bailey MT, Hutch CR, Powell ND, Sheridan JF, Nelson RJ (2008b) Food restriction compromises immune memory in deer mice (Peromyscus maniculatus) by reducing spleen-derived antibody-producing B cell numbers. Physiol Biochem Zool 81:366–372

    Article  PubMed Central  PubMed  Google Scholar 

  • McGraw LA, Davis JK, Young LJ, Thomas JW (2011) A genetic linkage map and comparative mapping of the prairie vole (Microtus ochrogaster) genome. BMC Genet 12:60. 10.1186/1471-2156-1112-1160

  • Mihola O, Trachtulec Z, Vicek C, Schimenti JC, Foreijt J (2009) A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323:373–375

    Article  CAS  PubMed  Google Scholar 

  • Mlynarski EE, Obergfell CJ, Rens W, O’Brien PC, Ramsdell CM, Dewey MJ, O’Neill MJ, O’Neill RJ (2008) Peromyscus maniculatusMus musculus chromosome homology map derived from reciprocal cross species chromosome painting. Cytogenet Genome Res 121:288–292

    Article  CAS  PubMed  Google Scholar 

  • Nichol ST, Spiropoulou CF, Morzunov SP, FRollin PE, Ksiazek TG, Feldmann H, Sanchez A, Childs J, Zaki S, Peters CJ (1993) Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262:914–917

    Article  CAS  PubMed  Google Scholar 

  • Oliver PI, Goodstadt L, Bayes JJ, Birtle Z, Roach KC, Phadnis N, Beatson SA, Lunter G, Malik HS, Ponting CP (2009) Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet 5:e1000753

    Article  PubMed Central  PubMed  Google Scholar 

  • Oriel RC, Wiley CD, Dewey MJ, Vrana PB (2008) Adaptive genetic variation, stress and glucose regulation. Dis Models Mech 1:255–263

    Article  CAS  Google Scholar 

  • Pyter LM, Neigh GN, Nelson RJ (2005) Social environment modulates photoperiodic immune and reproductive responses in adult male white-footed mice (Peromyscus leucopus). Am J Physiol Regul Integr Comp Physiol 288:R891–R896

    Article  CAS  PubMed  Google Scholar 

  • Pyter LM, Trainor BC, Nelson RJ (2006) Testosterone and photoperiod interact to affect spatial learning and memory in adult male white-footed mice (Peromyscus leucopus). EurJ Neurosci 23:3056–3062

    Article  Google Scholar 

  • Ramsdell CM, Thames EL, Weston JL, Dewey MJ (2006) Development of a deer mouse whole-genome radiation hybrid panel and comparative mapping of Mus chromosome 11 loci. Mamm Genome 17:37–48

    Article  CAS  PubMed  Google Scholar 

  • Ramsdell CM, Lewandowski AA, Weston Glenn JL, Vrana PB, O’Neill RJ, Dewey MJ (2008) Comparative genome mapping of the deer mouse (Peromyscus maniculatus) reveals greater similarity to rat (Rattus norvegicus) than to the lab mouse (Mus musculus). BMC Evol Biol 8:65–78

    Article  PubMed Central  PubMed  Google Scholar 

  • Ribble D (1991) The monogamous mating system of Peromyscus californicus as revealed by DNA fingerprinting. Behav Ecol Soc 29:161–166

    Google Scholar 

  • Shorter KR, Owen A, Anderson V, Hall-Smith AC, Hayford S, Cakora P, Crossland JP, Georgi VRM, Perkins A, Kelly SJ, Felder MR, Vrana PB (2014) Natural genetic variation underlying differences in Peromyscus repetitive and social/aggressive behaviors. Behav Genet. doi:10.1007/s10519-013-9640-8

  • Sinha AU, Meller J (2007) Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. BMC Biotechnol 8:9

    Google Scholar 

  • Steiner CC, Weber JN, Hoekstra HE (2007) Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol 5:1880–1889

    Article  CAS  Google Scholar 

  • Steppan S, Adkins R, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53:533–553

    Google Scholar 

  • Storz JF, Runck AM, Sabatino SJ, Kelly JK, Ferrand N, Moriyama H, Weber RE, Fago A (2009) Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc Natl Acad Sci USA 106:14450–14455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Storz JF, Runck AM, Moriyama H, Weber RE, Fago A (2010) Genetic differences in hemoglobin function between highland and lowland deer mice. J Exp Biol 213:2565–2574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Storz JF, Natarajan C, Cheviron ZA, Hoffmann FG, Kelly JK (2011) Altitudinal variation at duplicated β-globin genes in deer mice: Effects of selection, recombination, and gene conversion. Genetics 90(1):203–216

    Google Scholar 

  • Tanimura Y, Yang MC, Ottens AK, Lewis MH (2010) Development and temporal organization of repetitive behavior in an animal model. Dev Psychobiol 52:813–824

    Article  PubMed Central  PubMed  Google Scholar 

  • Trainor BC, Lin S, Finy MS, Rowland MR, Nelson RJ (2007) Photoperiod reverses the effects of estrogens on male aggression via genomic and nongenomic pathways. Proc Natl Acad Sci USA 104:9840–9845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trainor BC, Takahashi EY, Silva AL, Crean KK, Hostetler C (2010) Sex differences in hormonal responses to social conflict in the monogamous California mouse. Horm Behav 58:506–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turner LM, Young AR, Römpler H, Schöneberg T, Phelps SM, Hoekstra HE (2010) Monogamy evolves through multiple mechanisms: Evidence from V1aR in deer mice. Mol Biol Evol 27:1269–1278

    Google Scholar 

  • Voltura MB, French JBJ (2007) Effects of dietary PCB exposure on reproduction in the white-footed mouse (Peromyscus leucopus). Arch Environ Contam Toxicol 52:264–269

    Article  CAS  PubMed  Google Scholar 

  • Vrana PB, Guan XJ, Ingram RS, Tilghman SM (1998) Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet 20:362–365

    Article  CAS  PubMed  Google Scholar 

  • Vrana PB, Fossella JA, Matteson P, del Rio T, O’Neill MJ, Tilghman SM (2000) Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nat Genet 25:120–124

    Article  CAS  PubMed  Google Scholar 

  • Vrana PB, Shorter KR, Szalai G, Felder MR, Crossland JP, Veres M, Allen JE, Dewey MJ, Dawson WD (2013) Peromyscus (Deer Mice) as Developmental Models. WIREs Dev Biol. doi:10.1002/wdev.132

  • Weber JN, Peters MB, Tsyusko OV, Linnen CR, Hagen C, Schable NA, Tuberville TD, McKee AM, Lance SL, Jones KL, Fisher HS, Dewey MJ, Hoekstra HE, Glenn TC (2010) Five hundred microsatellite loci for Peromyscus. Conserv Genet 11:1243–1246

    Article  PubMed Central  PubMed  Google Scholar 

  • Weber JN, Peterson BK, Hoekstra HE (2013) Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493:402–406

    Article  CAS  PubMed  Google Scholar 

  • Wiedmeyer CE, Crossland JP, Dewey MJ, Felder MR, C. BS, Vrana PB, Szalai G (2014) Comparative hematological and serum biochemical values among Peromyscus species and their hybrids. J Am Assoc Lab Anim Sci (in press)

  • Wu PJ, Greeley EH, Hansen LG, Segre M (1999) Immunological, hematological, and biochemical responses in immature white-footed mice following maternal Aroclor 1254 exposure: a possible bioindicator. Arch Environ Contam Toxicol 36:469–476

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported primarily by NIH GM069601 (MJD, TG), and also by NIH P40 OD010961 (MRF, GS) and NSF 0444165 (MRF, GS). We thank the Colony Manager of the Peromyscus Genetic Stock Center, Janet Crossland, for invaluable help in breeding and record keeping of the animals. We thank M. Peters, T. Tuberville, S. Lance, K. Jones, and A. McKee for assistance in genotyping of microsatellite loci.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul B. Vrana or Michael R. Felder.

Appendix

Appendix

See Table 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenney-Hunt, J., Lewandowski, A., Glenn, T.C. et al. A genetic map of Peromyscus with chromosomal assignment of linkage groups (a Peromyscus genetic map). Mamm Genome 25, 160–179 (2014). https://doi.org/10.1007/s00335-014-9500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-014-9500-8

Keywords

Navigation