Skip to main content
Log in

A genetical genomics approach reveals new candidates and confirms known candidate genes for drip loss in a porcine resource population

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

In this study lean meat water-holding capacity (WHC) of a Duroc × Pietrain (DuPi) resource population with corresponding genotypes and transcriptomes was investigated using genetical genomics. WHC was characterized by drip loss measured in M. longissimus dorsi. The 60K Illumina SNP chips identified genotypes of 169 F2 DuPi animals. Whole-genome transcriptomes of muscle samples were available for 132 F2 animals using the Affymetrix 24K GeneChip® Porcine Genome Array. Performing genome-wide association studies of transcriptional profiles, which are correlated with phenotypes, allows elucidation of cis- and trans-regulation. Expression levels of 1,228 genes were significantly correlated with drip loss and were further analyzed for enrichment of functional annotation groups as defined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. A hypergeometric gene set enrichment test was performed and revealed glycolysis/glyconeogenesis, pentose phosphate pathway, and pyruvate metabolism as the most promising pathways. For 267 selected transcripts, expression quantitative trait loci (eQTL) analysis was performed and revealed a total of 1,541 significant associations. Because of positional accordance of the gene underlying transcript and the eQTL location, it was possible to identify eight eQTL that can be assumed to be cis-regulated. Comparing the results of gene set enrichment and the eQTL detection tests, molecular networks and potential candidate genes, which seemed to play key roles in the expression of WHC, were detected. The α-1-microglobulin/bikunin precursor (AMBP) gene was assumed to be cis-regulated and was part of the glycolysis pathway. This approach supports the identification of trait-associated SNPs and the further biological understanding of complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AffymetrixTechnicalNote (2005) Guide to probe logarithmic intensity error (PLIER) estimation. Affymetrix, Santa Clara

    Google Scholar 

  • Arion WJ, Lange AJ, Walls HE, Ballas LM (1980) Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J Biol Chem 255:396–406

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101:2173–2178

    Article  PubMed  CAS  Google Scholar 

  • Borchers N, Otto G, Kalm E (2007) Genetic relationship of drip loss to further meat quality traits in purebred Pietrains. Arch Tierz-Arch Anim Breed 50:84–91

    Google Scholar 

  • Cinar MU, Kayan A, Uddin MJ, Jonas E, Tesfaye D, Phatsara C, Ponsuksili S, Wimmers K, Tholen E, Looft C, Jungst H, Schellander K (2012) Association and expression quantitative trait loci (eQTL) analysis of porcine AMBP, GC and PPP1R3B genes with meat quality traits. Mol Biol Rep 39:4809–4821

    Article  PubMed  CAS  Google Scholar 

  • Ciobanu DC, Lonergan SM, Huff-Lonergan EJ (2011) Genetics of meat quality and carcass traits. In: Ruvinsky A (ed) The Genetics of the Pig. CAB International, New York

    Google Scholar 

  • Cole JB, VanRaden PM, O’Connell JR, Van Tassell CP, Sonstegard TS, Schnabel RD, Taylor JF, Wiggans GR (2009) Distribution and location of genetic effects for dairy traits. J Dairy Sci 92:2931–2946

    Article  PubMed  CAS  Google Scholar 

  • Edwards DB, Ernst CW, Raney NE, Doumit ME, Hoge MD, Bates RO (2008) Quantitative trait locus mapping in an F-2 duroc × pietrain resource population: II. Carcass and meat quality traits. J Anim Sci 86:254–266

    Article  PubMed  CAS  Google Scholar 

  • Göring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JBM, Abraham LJ, Rainwater DL, Comuzzie AG, Mahaney MC, Almasy L, MacCluer JW, Kissebah AH, Collier GR, Moses EK, Blangero J (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 39:1208–1216

    Article  PubMed  Google Scholar 

  • Greaser ML (2001) Postmortem muscle chemistry. In: Hui YH, Nip WK, Roger RW, Young OA (eds) Meat science and applications. Marcel Dekker, New York

    Google Scholar 

  • Grewal JS, Tsai JY, Khan SR (2005) Oxalate-inducible AMBP gene and its regulatory mechanism in renal tubular epithelial cells. Biochem J 387:609–616

    Article  PubMed  CAS  Google Scholar 

  • Große-Brinkhaus C, Jonas E, Buschbell H, Phatsara C, Tesfaye D, Jungst H, Looft C, Schellander K, Tholen E (2010) Epistatic QTL pairs associated with meat quality and carcass composition traits in a porcine duroc × pietrain population. Genet Sel Evol 42:39

    Article  PubMed  Google Scholar 

  • Haley C, de Koning DJ (2006) Genetical genomics in livestock: potentials and pitfalls. Anim Genet 37(Suppl 1):10–12

    Article  PubMed  CAS  Google Scholar 

  • Hamill RM, McBryan J, Mcgee C, Mullen AM, Sweeney T, Talbot A, Cairns MT, Davey GC (2012) Functional analysis of muscle gene expression profiles associated with tenderness and intramuscular fat content in pork. Meat Sci 92:440–450

    Article  PubMed  CAS  Google Scholar 

  • Hamm R (1985) Wasserbindugsvermögen des Fleisches-Aspekte eines wichtigen Qualitätsmerkmals. Mitteilungsblatt BAFF 88:6383–6387

    Google Scholar 

  • Han B, Kang HM, Eskin E (2009) Rapid and accurate multiple testing correction and power estimation for millions of correlated markers. PLoS Genet 5:e10000456

    Article  Google Scholar 

  • Honikel KO, Kim CJ, Hamm R, Roncales P (1986) Sarcomere shortening of pre-rigor muscles and its influence on drip loss. Meat Sci 16:267–282

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Park CA, Fritz ER, Reecy JM (2010) QTLdb: a comprehensive database tool building bridges between genotypes and phenotypes. In: The 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany, August 1–6, 2010

  • Huff Lonergan E, Zhang W, Lonergan SM (2010) Biochemistry of postmortem muscle—lessons on mechanisms of meat tenderization. Meat Sci 86:184–195

    Article  PubMed  CAS  Google Scholar 

  • Huff-Lonergan E, Lonergan SM (2005) Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci 71:194–204

    Article  PubMed  CAS  Google Scholar 

  • Huff-Lonergan E, Lonergan SM (2007) New frontiers in understanding drip loss in pork: recent insights on the role of postmortem muscle biochemistry. J Anim Breed Genet 124:19–26

    Article  PubMed  Google Scholar 

  • Jansen RC (2003) Studying complex biological systems using multifactorial perturbation. Nat Rev Genet 4:145–151

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Nap JP (2004) Regulating gene expression: surprises still in store. Trends Genet 20:223–225

    Article  PubMed  CAS  Google Scholar 

  • Jennen DG, Brings AD, Liu G, Jungst H, Tholen E, Jonas E, Tesfaye D, Schellander K, Phatsara C (2007) Genetic aspects concerning drip loss and water-holding capacity of porcine meat. J Anim Breed Genet 124:2–11

    Article  PubMed  Google Scholar 

  • Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L (1999) A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet 21:157–158

    Article  PubMed  CAS  Google Scholar 

  • Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Kraft P, Schadt E, Aten J, Horvath S (2003) A family-based test for correlation between gene expression and trait values. Am J Hum Genet 72:1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Kwasiborski A, Sayd T, Chambon C, Sante-Lhoutellier V, Rocha D, Terlouw C (2008) Pig Longissimus lumborum proteome: part II: relationships between protein content and meat quality. Meat Sci 80:982–996

    Article  PubMed  CAS  Google Scholar 

  • Leuzzi R, Banhegyi G, Kardon T, Marcolongo P, Capecchi PL, Burger HJ, Benedetti A, Fulceri R (2003) Inhibition of microsomal glucose-6-phosphate transport in human neutrophils results in apoptosis: a potential explanation for neutrophil dysfunction in glycogen storage disease type 1b. Blood 101:2381–2387

    Article  PubMed  CAS  Google Scholar 

  • Lin BC, Pan CJ, Chou JY (2000) Human variant glucose-6-phosphate transporter is active in microsomal transport. Hum Genet 107:526–529

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Jennen DGJ, Tholen E, Juengst H, Kleinwachter T, Holker M, Tesfaye D, Un G, Schreinemachers HJ, Murani E, Ponsuksili S, Kim JJ, Schellander K, Wimmers K (2007) A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Anim Genet 38:241–252

    Article  PubMed  CAS  Google Scholar 

  • Liu GS, Kim JJ, Jonas E, Wimmers K, Ponsuksili S, Murani E, Phatsara C, Tholen E, Juengst H, Tesfaye D, Chen JL, Schellander K (2008) Combined line-cross and half-sib QTL analysis in Duroc-Pietrain population. Mamm Genome 19:429–438

    Article  PubMed  Google Scholar 

  • Lobjois V, Liaubet L, SanCristobal M, Glenisson J, Feve K, Rallieres J, Le Roy P, Milan D, Cherel P, Hatey F (2008) A muscle transcriptome analysis identifies positional candidate genes for a complex trait in pig. Anim Genet 39:147–162

    Article  PubMed  CAS  Google Scholar 

  • Musarò A, Fulle S, Fanò G (2010) Oxidative stress and muscle homeostasis. Curr Opin Clin Nutr Metab Care 13(3):236–242

    Article  PubMed  Google Scholar 

  • Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet 21:155–156

    Article  PubMed  CAS  Google Scholar 

  • Offer G, Cousins T (1992) The mechanism of drip production—formation of two compartments of extracellular space in muscle postmortem. J Sci Food Agric 58:107–116

    Article  Google Scholar 

  • Offer G, Knight P (eds) (1988) The structural basis of water-holding capacity in meat part 1: general principles and water uptake in meat processing. Elsevier Applied Science, New York

    Google Scholar 

  • Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH (2008) Functional organization of the transcriptome in human brain. Nat Neurosci 11:1271–1282

    Article  PubMed  CAS  Google Scholar 

  • Ortenblad N, Young JF, Oksbjerg N, Nielsen JH, Lambert IH (2003) Reactive oxygen species are important mediators of taurine release from skeletal muscle cells. Am J Physiol Cell Physiol 284:C1362–C1373

    Article  PubMed  CAS  Google Scholar 

  • Pavelic K, Bukovic D, Pavelic J (2002) The role of insulin-like growth factor 2 and its receptors in human tumors. Mol Med 8:771–780

    PubMed  CAS  Google Scholar 

  • Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE (1972) Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11:2627–2633

    Article  PubMed  CAS  Google Scholar 

  • Ponsuksili S, Jonas E, Murani E, Phatsara C, Srikanchai T, Walz C, Schwerin M, Schellander K, Wimmers K (2008a) Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle. BMC Genomics 9:367

    Article  PubMed  Google Scholar 

  • Ponsuksili S, Murani E, Phatsara C, Jonas E, Walz C, Schwerin M, Schellander K, Wimmers K (2008b) Expression profiling of muscle reveals transcripts differentially expressed in muscle that affect water-holding capacity of pork. J Agric Food Chem 56:10311–10317

    Article  PubMed  CAS  Google Scholar 

  • Ponsuksili S, Murani E, Schwerin M, Schellander K, Wimmers K (2010) Identification of expression QTL (eQTL) of genes expressed in porcine M. longissimus dorsi and associated with meat quality traits. BMC Genomics 11:572

    Article  PubMed  Google Scholar 

  • Ponsuksili S, Murani E, Brand B, Schwerin M, Wimmers K (2011) Integrating expression profiling and whole-genome association for dissection of fat traits in a porcine model. J Lipid Res 52:668–678

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  • Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    Article  PubMed  CAS  Google Scholar 

  • Rosenvold K, Andersen HJ (2003) Factors of significance, for pork quality—a review. Meat Sci 64:219–237

    Article  PubMed  Google Scholar 

  • Rothschild MF, Hu ZL, Jiang Z (2007) Advances in QTL mapping in pigs. Int J Biol Sci 3:192–197

    Article  PubMed  CAS  Google Scholar 

  • Solem C, Koebmann B, Jensen PR (2008) Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis. IET Syst Biol 2:64–72

    Article  PubMed  CAS  Google Scholar 

  • Steibel JP, Bates RO, Rosa GJ, Tempelman RJ, Rilington VD, Ragavendran A, Raney NE, Ramos AM, Cardoso FF, Edwards DB, Ernst CW (2011) Genome-wide linkage analysis of global gene expression in loin muscle tissue identifies candidate genes in pigs. PLoS ONE 6:e16766

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S, Salier JP, Lal SK (2002) The liver-specific human alpha(1)-microglobulin/bikunin precursor (AMBP) is capable of self-association. Arch Biochem Biophys 399:66–72

    Article  PubMed  CAS  Google Scholar 

  • Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836

    Article  PubMed  Google Scholar 

  • van Wyk JJ, Smith EP (1999) Commentary-insulin-like growth factors and skeletal growth: possibilities for therapeutic interventions. J Clin Endocrinol Metab 84:4349–4354

    Article  PubMed  Google Scholar 

  • Velleman SG (2000) The role of the extracellular matrix in skeletal development. Poult Sci 79:985–989

    PubMed  CAS  Google Scholar 

  • Velleman SG (2002) Role of extracellular matrix (ECM) in growth and development: role of the extracellular matrix in muscle growth and development. J Anim Sci 80:E8–E13

    Google Scholar 

  • Wang D, Nettleton D (2006) Identifying genes associated with a quantitative trait or quantitative trait locus via selective transcriptional profiling. Biometrics 62:504–514

    Article  PubMed  Google Scholar 

  • Wayne ML, McIntyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA 99:14903–14906

    Article  PubMed  CAS  Google Scholar 

  • Wimmers K, Fiedler I, Hardge T, Murani E, Schellander K, Ponsuksili S (2006) QTL for microstructural and biophysical muscle properties and body composition in pigs. BMC Genet 7:15

    Article  PubMed  Google Scholar 

  • Wimmers K, Murani E, Ponsuksili S (2010) Functional genomics and genetical genomics approaches towards elucidating networks of genes affecting meat performance in pigs. Brief Funct Genomics 9:251–258

    Article  PubMed  CAS  Google Scholar 

  • Zentralverband der Deutschen Schweineproduktion (ZDS) (2003) Richtlinie für die Stationsprüfung auf Mastleistung, Schlachtkörperwert und Fleischbeschaffenheit beim Schwein, 10.12.2003, Bonn, Germany

Download references

Acknowledgments

Authors are grateful to Prof. Dr. med. Markus M. Nöthen from the Institute of Human Genetics, University of Bonn, for genotyping the samples with an Illumina 60K Porcine SNP Chip. This work was part of the DRIP phase II (Genetic-functional background of the water-holding capacity in pork) project and supported by the German Research Foundation (DFG), Germany (Grant No. SCHE562/13-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Große-Brinkhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 408 kb)

Supplementary material 2 (DOC 846 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heidt, H., Cinar, M.U., Uddin, M.J. et al. A genetical genomics approach reveals new candidates and confirms known candidate genes for drip loss in a porcine resource population. Mamm Genome 24, 416–426 (2013). https://doi.org/10.1007/s00335-013-9473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-013-9473-z

Keywords

Navigation