Skip to main content
Log in

A spontaneous mutation in Srebf2 leads to cataracts and persistent skin wounds in the lens opacity 13 (lop13) mouse

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Lens opacity 13 (lop13) is a spontaneous, autosomal recessive mouse mutant that exhibits nuclear cataracts. Histological analysis revealed swollen lens fiber cells and the presence of bladder cells within the lens cortex, as well as morgagnian globules and liquefied material at the lens posterior. At 3 months of age, in addition to cataracts, lop13 mice also develop persistent skin wounds. Linkage analysis assigned the lop13 locus to a 1.1-Mb region on mouse Chr 15, encompassing 19 candidate genes. Sequence analysis identified a C3112T mutation in exon 18 of Sterol Regulatory Element Binding-Transcription Factor 2 (Srebf2) resulting in the R1038C substitution of a highly conserved arginine within the Srebf2 regulatory domain. Srebf2 belongs to a family of membrane-bound basic helix–loop–helix leucine zipper transcription factors that control the expression of genes involved in the biosynthesis and uptake of cholesterol and fatty acids. The lack of complementation observed in Srebf2 lop13/GT compound heterozygotes carrying the Srebf2 gene trapped allele (Srebf2 GT) provides genetic evidence that the identified C3112T substitution in Srebf2 is responsible for the lop13 phenotype. Gas chromatography analysis identified lower levels of cholesterol in the lop13 brain, liver, and lens when compared to wild-type mice. These findings suggest that lop13 is a hypomorphic mutation in Srebf2. As such, the lop13 mouse presents an invaluable in vivo model for studying the contribution of Srebf2 and cholesterol to maintaining the homeostasis of the lens and skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham AG, Condon NG, West Gower E (2006) The new epidemiology of cataract. Ophthalmol Clin North Am 19:415–425

    PubMed  Google Scholar 

  • Bhagyalaxmi SG, Srinivas P, Barton KA, Kumar KR, Vidyavathi M, Petrash JM, Bhanuprakash Reddy G, Padma T (2009) A novel mutation (F71L) in alphaA-crystallin with defective chaperone-like function associated with age-related cataract. Biochim Biophys Acta 1792:974–981

    PubMed  CAS  Google Scholar 

  • Broeckling CD, Reddy IR, Duran AL, Zhao X, Sumner LW (2006) MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal Chem 78:4334–4341

    Article  PubMed  CAS  Google Scholar 

  • Cenedella RJ (1983) Source of cholesterol for the ocular lens, studied with U18666A: a cataract-producing inhibitor of lipid metabolism. Exp Eye Res 37:33–43

    Article  PubMed  CAS  Google Scholar 

  • Cenedella RJ (1996) Cholesterol and cataracts. Surv Ophthalmol 40:320–337

    Article  PubMed  CAS  Google Scholar 

  • Chang B, Hawes NL, Hurd RE, Wang J, Howell D, Davisson MT, Roderick TH, Nusinowitz S, Heckenlively JR (2005) Mouse models of ocular diseases. Vis Neurosci 22:587–593

    Article  PubMed  CAS  Google Scholar 

  • Cogan DG (1962) Anatomy of lens and pathology of cataracts. Exp Eye Res 1:291–295

    Article  PubMed  CAS  Google Scholar 

  • Congdon N, Vingerling JR, Klein BE, West S, Friedman DS, Kempen J, O’Colmain B, Wu SY, Taylor HR (2004) Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch Ophthalmol 122:487–494

    Article  PubMed  Google Scholar 

  • DeBlack SS (2003) Cigarette smoking as a risk factor for cataract and age-related macular degeneration: a review of the literature. Optometry 74:99–110

    PubMed  Google Scholar 

  • Duan X, Zhu W, Li Y, Zhang Z, Zhao Y, Dao J, Xiao Y (2005) The effect of sterol regulatory element-binding protein 2 polymorphism on the serum lipid in northern Chinese subjects. J Lipid Res 46:252–257

    Article  PubMed  CAS  Google Scholar 

  • Faniello MC, Di Sanzo M, Quaresima B, Nistico A, Fregola A, Grosso M, Cuda G, Costanzo F (2009) Bilateral cataract in a subject carrying a C to A transition in the L ferritin promoter region. Clin Biochem 42:911–914

    Article  PubMed  CAS  Google Scholar 

  • Feingold KR (2009) The outer frontier: the importance of lipid metabolism in the skin. J Lipid Res 50(Suppl):S417–S422

    Article  PubMed  Google Scholar 

  • Foster A, Resnikoff S (2005) The impact of Vision 2020 on global blindness. Eye (Lond) 19:1133–1135

    Article  CAS  Google Scholar 

  • Francis PJ, Moore AT (2004) Genetics of childhood cataract. Curr Opin Ophthalmol 15:10–15

    Article  PubMed  Google Scholar 

  • Garber DW, Kulkarni KR, Anantharamaiah GM (2000) A sensitive and convenient method for lipoprotein profile analysis of individual mouse plasma samples. J Lipid Res 41:1020–1026

    PubMed  CAS  Google Scholar 

  • Goldstein JL, DeBose-Boyd RA, Brown MS (2006) Protein sensors for membrane sterols. Cell 124:35–46

    Article  PubMed  CAS  Google Scholar 

  • Gould DB, John SW (2002) Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum Mol Genet 11:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Graw J (2004) Congenital hereditary cataracts. Int J Dev Biol 48:1031–1044

    Article  PubMed  CAS  Google Scholar 

  • Hammond CJ, Snieder H, Spector TD, Gilbert CE (2000) Genetic and environmental factors in age-related nuclear cataracts in monozygotic and dizygotic twins. N Engl J Med 342:1786–1790

    Article  PubMed  CAS  Google Scholar 

  • Hammond CJ, Duncan DD, Snieder H, de Lange M, West SK, Spector TD, Gilbert CE (2001a) The heritability of age-related cortical cataract: the twin eye study. Invest Ophthalmol Vis Sci 42:601–605

    PubMed  CAS  Google Scholar 

  • Hammond CJ, Snieder H, Gilbert CE, Spector TD (2001b) Genes and environment in refractive error: the twin eye study. Invest Ophthalmol Vis Sci 42:1232–1236

    PubMed  CAS  Google Scholar 

  • Hassemer EL, Le Gall SM, Liegel R, McNally M, Chang B, Zeiss CJ, Dubielzig RD, Horiuchi K, Kimura T, Okada Y, Blobel CP, Sidjanin DJ (2010) The waved with open eyelids (woe) locus is a hypomorphic mouse mutation in Adam17. Genetics 185:245–255

    Article  PubMed  CAS  Google Scholar 

  • Hejtmancik JF (2008) Congenital cataracts and their molecular genetics. Semin Cell Dev Biol 19:134–149

    Article  PubMed  CAS  Google Scholar 

  • Hejtmancik JF, Kantorow M (2004) Molecular genetics of age-related cataract. Exp Eye Res 79:3–9

    Article  PubMed  CAS  Google Scholar 

  • Herman GE (2003) Disorders of cholesterol biosynthesis: prototypic metabolic malformation syndromes. Hum Mol Genet 12(Spec No 1):R75–R88

    Article  PubMed  CAS  Google Scholar 

  • Hodge WG, Whitcher JP, Satariano W (1995) Risk factors for age-related cataracts. Epidemiol Rev 17:336–346

    PubMed  CAS  Google Scholar 

  • Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131

    PubMed  CAS  Google Scholar 

  • Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9:125–138

    Article  PubMed  CAS  Google Scholar 

  • Jun G, Guo H, Klein BE, Klein R, Wang JJ, Mitchell P, Miao H, Lee KE, Joshi T, Buck M, Chugha P, Bardenstein D, Klein AP, Bailey-Wilson JE, Gong X, Spector TD, Andrew T, Hammond CJ, Elston RC, Iyengar SK, Wang B (2009) EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet 5:e1000584

    Article  PubMed  Google Scholar 

  • Karas N, Gobec L, Pfeifer V, Mlinar B, Battelino T, Lukac-Bajalo J (2003) Mutations in galactose-1-phosphate uridyltransferase gene in patients with idiopathic presenile cataract. J Inherit Metab Dis 26:699–704

    Article  PubMed  CAS  Google Scholar 

  • Kelley RI, Herman GE (2001) Inborn errors of sterol biosynthesis. Annu Rev Genomics Hum Genet 2:299–341

    Article  PubMed  CAS  Google Scholar 

  • Li LK, So L, Spector A (1985) Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. J Lipid Res 26:600–609

    PubMed  CAS  Google Scholar 

  • Liu Y, Ke M, Yan M, Guo S, Mothobi ME, Chen Q, Zheng F (2011) Association between gap junction protein-alpha 8 polymorphisms and age-related cataract. Mol Biol Rep 38:1301–1307

    Article  PubMed  CAS  Google Scholar 

  • Miserez AR, Cao G, Probst LC, Hobbs HH (1997) Structure of the human gene encoding sterol regulatory element binding protein 2 (SREBF2). Genomics 40:31–40

    Article  PubMed  CAS  Google Scholar 

  • Miserez AR, Muller PY, Barella L, Barella S, Staehelin HB, Leitersdorf E, Kark JD, Friedlander Y (2002) Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. Atherosclerosis 164:15–26

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Li G, Abe I, Nakayama J, Guo Z, Sawashita J, Ugawa T, Nishizono S, Serikawa T, Higuchi K, Shumiya S (2006) Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat. J Clin Invest 116:395–404

    Article  PubMed  CAS  Google Scholar 

  • Muller PY, Miserez AR (2002) Identification of mutations in the gene encoding sterol regulatory element binding protein (SREBP)-2 in hypercholesterolaemic subjects. J Med Genet 39:271–275

    Article  PubMed  CAS  Google Scholar 

  • Nwokoro NA, Wassif CA, Porter FD (2001) Genetic disorders of cholesterol biosynthesis in mice and humans. Mol Genet Metab 74:105–119

    Article  PubMed  CAS  Google Scholar 

  • Okano Y, Asada M, Fujimoto A, Ohtake A, Murayama K, Hsiao KJ, Choeh K, Yang Y, Cao Q, Reichardt JK, Niihira S, Imamura T, Yamano T (2001) A genetic factor for age-related cataract: identification and characterization of a novel galactokinase variant, “Osaka”, in Asians. Am J Hum Genet 68:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL (2007) Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci USA 104:6511–6518

    Article  PubMed  CAS  Google Scholar 

  • Raghow R, Yellaturu C, Deng X, Park EA, Elam MB (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19:65–73

    Article  PubMed  CAS  Google Scholar 

  • Rawson RB (2003) The SREBP pathway—insights from Insigs and insects. Nat Rev Mol Cell Biol 4:631–640

    Article  PubMed  CAS  Google Scholar 

  • Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851

    PubMed  Google Scholar 

  • Ryu HK, Jung BH, Kim KM, Yoo EA, Woo JT, Chung BC (2006) Determination of cholesterol in human hair using gas chromatography-mass spectrometry. Biomed Chromatogr 20:999–1003

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Shi X, Jin Y, Miao A, Bu L, He J, Jiang H, Lu Y, Kong X, Hu L (2008) Mutation screening of HSF4 in 150 age-related cataract patients. Mol Vis 14:1850–1855

    PubMed  CAS  Google Scholar 

  • Shiels A, Hejtmancik JF (2007) Genetic origins of cataract. Arch Ophthalmol 125:165–173

    Article  PubMed  CAS  Google Scholar 

  • Shiels A, Bennett TM, Knopf HL, Maraini G, Li A, Jiao X, Hejtmancik JF (2008) The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol Vis 14:2042–2055

    PubMed  CAS  Google Scholar 

  • Shiels A, Bennett TM, Hejtmancik JF (2010) Cat-Map: putting cataract on the map. Mol Vis 16:2007–2015

    PubMed  CAS  Google Scholar 

  • Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, Meng EC, Lee RE, Yee A, L’Italien L, Chuang PT, Young SG, Skarnes WC, Babbitt PC, Ferrin TE (2003) BayGenomics: a resource of insertional mutations in mouse embryonic stem cells. Nucleic Acids Res 31:278–281

    Article  PubMed  CAS  Google Scholar 

  • Sun LP, Seemann J, Goldstein JL, Brown MS (2007) Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci USA 104:6519–6526

    Article  PubMed  CAS  Google Scholar 

  • Talamas E, Jackson L, Koeberl M, Jackson T, McElwee JL, Hawes NL, Chang B, Jablonski MM, Sidjanin DJ (2006) Early transposable element insertion in intron 9 of the Hsf4 gene results in autosomal recessive cataracts in lop11 and ldis1 mice. Genomics 88:44–51

    Article  PubMed  CAS  Google Scholar 

  • Taylor HR (1999) Epidemiology of age-related cataract. Eye 13(Pt 3b):445–448

    Article  PubMed  Google Scholar 

  • Varnum DS (1981) Nuclear cataract (nuc). Mouse News Lett 64:59

    Google Scholar 

  • West SK, Valmadrid CT (1995) Epidemiology of risk factors for age-related cataract. Surv Ophthalmol 39:323–334

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Sato R, Goldstein JL, Brown MS (1994) Sterol-resistant transcription in CHO cells caused by gene rearrangement that truncates SREBP-2. Genes Dev 8:1910–1919

    Article  PubMed  CAS  Google Scholar 

  • Zuercher J, Neidhardt J, Magyar I, Labs S, Moore AT, Tanner FC, Waseem N, Schorderet DF, Munier FL, Bhattacharya S, Berger W, Kloeckener-Gruissem B (2010) Alterations of the 5′ untranslated region of SLC16A12 lead to age-related cataract. Invest Ophthalmol Vis Sci 51:3354–3361

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health grants EY15173 (DJS), P30EY001931 (DJS), and EY19943 (BC). The lipid analyses described in this work were performed at the Kansas Lipidomics Research Center Analytical Laboratory. Kansas Lipidomics Research Center was supported by National Science Foundation (EPS 0236913, MCB 0455318, DBI 0521587), Kansas Technology Enterprise Corporation, K-IDeA Networks of Biomedical Research Excellence (INBRE) of the National Institutes of Health (P20RR16475), and Kansas State University. We thank Drs. Sahoo and Drover from the Medical College of Wisconsin for their assistance with assays for measuring serum cholesterol levels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duska J. Sidjanin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merath, K.M., Chang, B., Dubielzig, R. et al. A spontaneous mutation in Srebf2 leads to cataracts and persistent skin wounds in the lens opacity 13 (lop13) mouse. Mamm Genome 22, 661–673 (2011). https://doi.org/10.1007/s00335-011-9354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9354-2

Keywords

Navigation