Skip to main content
Log in

Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V, Belisle B, Minden A (1998) PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 17:6527–6540

    Article  PubMed  CAS  Google Scholar 

  • Allen JD, Jaffer ZM, Park S-J, Burgin S, Hofmann C, Sells MA, Chen S, Derr-Yellin E, Michels EG, McDaniel A, Bessler WK, Ingram DA, Atkinson SJ, Travers JB, Chernoff J, Clapp DW (2009) p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood 113:2695–2705

    Article  PubMed  CAS  Google Scholar 

  • Arias-Romero LE, Chernoff J (2008) A tale of two Paks. Biol Cell 100:97–108

    Article  PubMed  CAS  Google Scholar 

  • Bagrodia S, Taylor SJ, Creasy CL, Chernoff J, Cerione RA (1995) Identification of a mouse p21Cdc42/Rac activated kinase. J Biol Chem 270:22731–22737

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781

    Article  PubMed  CAS  Google Scholar 

  • Dan C, Nath N, Liberto M, Minden A (2002) PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Mol Cell Biol 22:567–577

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Stroh C, Schulze-Osthoff K (2006) Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene 25:152–159

    PubMed  CAS  Google Scholar 

  • Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663

    PubMed  CAS  Google Scholar 

  • Hofmann C, Shepelev M, Chernoff J (2004) The genetics of Pak. J Cell Sci 117:4343–4354

    Article  PubMed  CAS  Google Scholar 

  • Jakobi R, Traugh JA (1992) Characterization of the phosphotransferase domain of casein kinase II by site-directed mutagenesis and expression in Escherichia coli. J Biol Chem 267:23894–23902

    PubMed  CAS  Google Scholar 

  • Jakobi R, Chen CJ, Tuazon PT, Traugh JA (1996) Molecular cloning and sequencing of the cytostatic G protein-activated protein kinase PAK I. J Biol Chem 271:6206–6211

    Article  PubMed  CAS  Google Scholar 

  • Jakobi R, Moertl E, Koeppel MA (2001) p21-activated protein kinase γ-PAK suppresses programmed cell death of BALB3T3 fibroblasts. J Biol Chem 276:16624–16634

    Article  PubMed  CAS  Google Scholar 

  • Jakobi R, McCarthy CC, Koeppel MA, Stringer DK (2003) Caspase-activated PAK-2 is regulated by subcellular targeting and proteasomal degradation. J Biol Chem 278:38675–38685

    Article  PubMed  CAS  Google Scholar 

  • Kissil JL, Johnson KC, Eckman MS, Jacks T (2002) Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 277:10394–10399

    Article  PubMed  CAS  Google Scholar 

  • Knaus UG, Morris S, Dong HJ, Chernoff J, Bokoch GM (1995) Regulation of human leukocyte p21-activated kinases through G protein-coupled receptors. Science 269:221–223

    Article  PubMed  CAS  Google Scholar 

  • Koeppel MA, McCarthy CC, Moertl E, Jakobi R (2004) Identification and characterization of PS-GAP as a novel regulator of caspase-activated PAK-2. J Biol Chem 279:53653–53664

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Cancer 6:459–471

    Article  PubMed  CAS  Google Scholar 

  • Lee N, MacDonald H, Reinhard C, Halenbeck R, Roulston A, Shi T, Williams LT (1997) Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc Natl Acad Sci USA 94:13642–13647

    Article  PubMed  CAS  Google Scholar 

  • Li X, Minden A (2003) Targeted disruption of the gene for the PAK5 kinase in mice. Mol Cell Biol 23:7134–7142

    Article  PubMed  CAS  Google Scholar 

  • Ma QL, Yang F, Calon F, Ubeda OJ, Hansen JE, Weisbart RH, Beech W, Frautschy SA, Cole GM (2008) p21-activated kinase-aberrant activation and translocation in Alzheimer disease pathogenesis. J Biol Chem 283:14132–14143

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Chong C, Zhao ZS, Leung T, Michael G, Hall C, Lim L (1995) Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J Biol Chem 270:25070–25078

    Article  PubMed  CAS  Google Scholar 

  • Marlin JW, Eaton A, Montano GT, Chang YW, Jakobi R (2009) Elevated p21-activated kinase 2 activity results in anchorage-independent growth and resistance to anticancer drug-induced cell death. Neoplasia 11:286–297

    PubMed  CAS  Google Scholar 

  • Marlin JW, Chang YW, Jakobi R (2010) Caspase activation of p21-activated kinase 2 occurs during cisplatin-induced apoptosis of SH-SY5Y neuroblastoma cells and in SH-SY5Y cell culture models of Alzheimer’s and Parkinson’s disease. J Cell Death 3:23–32

    CAS  Google Scholar 

  • Martin GA, Bollag G, McCormick F, Abo A (1995) A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J 14:4385

    PubMed  CAS  Google Scholar 

  • Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG (2000) Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 97:185–189

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TV, Galvan V, Huang W, Banwait S, Tang H, Zhang J, Bredesen DE (2008) Signal transduction in Alzheimer disease: p21-activated kinase signaling requires C-terminal cleavage of APP at Asp664. J Neurochem 104:1065–1080

    Article  PubMed  CAS  Google Scholar 

  • Qu J, Li X, Novitch BG, Zheng Y, Kohn M, Xie JM, Kozinn S, Bronson R, Beg AA, Minden A (2003) PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol Cell Biol 23:7122–7133

    Article  PubMed  CAS  Google Scholar 

  • Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276:1571–1574

    Article  PubMed  CAS  Google Scholar 

  • Rudel T, Zenke FT, Chuang TH, Bokoch GM (1998) p21-activated kinase (PAK) is required for Fas-induced JNK activation in Jurkat cells. J Immunol 160:7–11

    PubMed  CAS  Google Scholar 

  • Sarkar G, Sommer SS (1990) The “megaprimer” method of site-directed mutagenesis. Biotechniques 8:404–407

    PubMed  CAS  Google Scholar 

  • Schlesinger TK, Bonvin C, Jarpe MB, Fanger GR, Cardinaux JR, Johnson GL, Widmann C (2002) Apoptosis stimulated by the 91-kDa caspase cleavage MEKK1 fragment requires translocation to soluble cellular compartments. J Biol Chem 277:10283–10291

    Article  PubMed  CAS  Google Scholar 

  • Spector DL, Goldman RD, Leinwand LA (1998) Cells: A laboratory manual. CSHL Press, Cold Spring Harbor

    Google Scholar 

  • Teo M, Manser E, Lim L (1995) Identification and molecular cloning of a p21cdc42/rac1-activated serine/threonine kinase that is rapidly activated by thrombin in platelets. J Biol Chem 270:26690–26697

    Article  PubMed  CAS  Google Scholar 

  • Ura S, Masuyama N, Graves JD, Gotoh Y (2001) Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc Natl Acad Sci USA 98:10148–10153

    Article  PubMed  CAS  Google Scholar 

  • Walter BN, Huang Z, Jakobi R, Tuazon PT, Alnemri ES, Litwack G, Traugh JA (1998) Cleavage and activation of p21-activated protein kinase γ-PAK by CPP32 (caspase 3). Effects of autophosphorylation on activity. J Biol Chem 273:28733–28739

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z (2001) Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem 276:15345–15353

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, Morihara T, Ubeda OJ, Ambegaokar S, Hansen JE, Weisbart RH, Teter B, Frautschy SA, Cole GM (2006) Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci 9:234–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Jonathan Chernoff for the PAK-2 BAC clone 21411, Richard Palmiter for the 4523G9 vector, and Andras Nagy for R1 mouse embryonic stem cells. This work was supported by a Kansas City Area Life Sciences Institute (KCALSI) Research Development Grant to R.J. and W.X. and NIH/NCI 5P30CA044579-19S49016 grant to W.X.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhao Xu or Rolf Jakobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marlin, J.W., Chang, YW.E., Ober, M. et al. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34. Mamm Genome 22, 306–317 (2011). https://doi.org/10.1007/s00335-011-9326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9326-6

Keywords

Navigation