Skip to main content
Log in

The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The immunity-related GTPases (IRGs) belong to the family of large, interferon-inducible GTPases and constitute a cell-autonomous resistance system essential for the control of vacuolar pathogens like Toxoplasma gondii in mice. Recent results demonstrated that numerous IRG members accumulate collaboratively at the parasitophorous vacuole of invading T. gondii leading to the destruction of the vacuole and the parasite and subsequent necrotic host cell death. Complex regulatory interactions between different IRG proteins are necessary for these processes. Disturbance of this finely balanced system, e.g., by single genetic deficiency for the important negative regulator Irgm1 or the autophagic regulator Atg5, leads to spontaneous activation of the effector IRG proteins when induced by IFNγ. This activation has cytotoxic consequences resulting in a severe lymphopenia, macrophage defects, and failure of the adaptive immune system in Irgm1-deficient mice. However, alternative functions in phagosome maturation and induction of autophagy have been proposed for Irgm1. The IRG system has been studied primarily in mice, but IRG genes are present throughout the mammalian lineage. Interestingly, the number, type, and diversity of genes present differ greatly even between closely related species, probably reflecting intimate host-pathogen coevolution driven by an armed race between the IRG resistance proteins and pathogen virulence factors. IRG proteins are targets for polymorphic T. gondii virulence factors, and genetic variation in the IRG system between different mouse strains correlates with resistance and susceptibility to virulent T. gondii strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Zeer MA, Al-Younes HM, Braun PR, Zerrahn J, Meyer TF (2009) IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS One 4:e4588

    Article  PubMed  Google Scholar 

  • Araujo FG, Williams DM, Grumet FC, Remington JS (1976) Strain-dependent differences in murine susceptibility to toxoplasma. Infect Immun 13(5):1528–1530

    CAS  PubMed  Google Scholar 

  • Bashkirov PV, Akimov SA, Evseev AI, Schmid SL, Zimmerberg J et al (2008) GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135:1276–1286

    Article  CAS  PubMed  Google Scholar 

  • Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L et al (2005) The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 6:R92

    Article  PubMed  Google Scholar 

  • Bekpen C, Marques-Bonet T, Alkan C, Antonacci F, Leogrande MB et al (2009) Death and resurrection of the human IRGM gene. PLoS Genet 5:e1000403

    Article  PubMed  Google Scholar 

  • Bernstein-Hanley I, Coers J, Balsara ZR, Taylor GA, Starnbach MN et al (2006) The p47 GTPases Igtp and Irgb10 map to the Chlamydia trachomatis susceptibility locus Ctrq-3 and mediate cellular resistance in mice. Proc Natl Acad Sci USA 103:14092–14097

    Article  CAS  PubMed  Google Scholar 

  • Binns DD, Barylko B, Grichine N, Atkinson MA, Helms MK et al (1999) Correlation between self-association modes and GTPase activation of dynamin. J Protein Chem 18:277–290

    Article  CAS  PubMed  Google Scholar 

  • Boehm U, Guethlein L, Klamp T, Ozbek K, Schaub A et al (1998) Two families of GTPases dominate the complex cellular response to IFN-gamma. J Immunol 161:6715–6723

    CAS  PubMed  Google Scholar 

  • Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366:643–654

    Article  CAS  PubMed  Google Scholar 

  • Boothroyd JC, Grigg ME (2002) Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? Curr Opin Microbiol 5:438–442

    Article  PubMed  Google Scholar 

  • Bougneres L, Helft J, Tiwari S, Vargas P, Chang BH et al (2009) A role for lipid bodies in the cross-presentation of phagocytosed antigens by MHC class I in dendritic cells. Immunity 31:232–244

    Article  CAS  PubMed  Google Scholar 

  • Boyle JP, Rajasekar B, Saeij JP, Ajioka JW, Berriman M et al (2006) Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii. Proc Natl Acad Sci USA 103:10514–10519

    Article  CAS  PubMed  Google Scholar 

  • Butcher BA, Greene RI, Henry SC, Annecharico KL, Weinberg JB, Denkers EY, Sher A, Taylor GA (2005) p47 GTPases regulate Toxoplasma gondii survival in activated macrophages. Infect Immun 73:3278–3286

    Article  CAS  PubMed  Google Scholar 

  • Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263

    Article  CAS  PubMed  Google Scholar 

  • Carlow DA, Marth J, Clark-Lewis I, Teh HS (1995) Isolation of a gene encoding a developmentally regulated T cell-specific protein with a guanine nucleotide triphosphate-binding motif. J Immunol 154:1724–1734

    CAS  PubMed  Google Scholar 

  • Cavailles P, Bisanz C, Papapietro O, Colacios C, Sergent V et al (2006) The rat Toxo1 locus controls the outcome of the toxoplasmic infection according to a mendelian mode. Med Sci (Paris) 22:679–680

    Google Scholar 

  • Che N, Li S, Gao T, Zhang Z, Han Y et al (2010) Identification of a novel IRGM promoter single nucleotide polymorphism associated with tuberculosis. Clin Chim Acta 411(21–22):1645–1649

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Du X, Zhang M, Zhang D, Ji M et al (2010) IFN-inducible p47 GTPases display differential responses to Schistosoma japonicum acute infection. Cell Mol Immunol 7(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Coers J, Bernstein-Hanley I, Grotsky D, Parvanova I, Howard JC et al (2008) Chlamydia muridarum evades growth restriction by the IFN-gamma-inducible host resistance factor Irgb10. J Immunol 180:6237–6245

    CAS  PubMed  Google Scholar 

  • Collazo CM, Yap GS, Sempowski GD, Lusby KC, Tessarollo L et al (2001) Inactivation of LRG-47 and IRG-47 reveals a family of interferon gamma-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 194:181–188

    Article  CAS  PubMed  Google Scholar 

  • Consortium WTCC (2007) Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  • Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V et al (2010) Genome-wide association study of CNVs in 16, 000 cases of eight common diseases and 3, 000 shared controls. Nature 464:713–720

    Article  CAS  PubMed  Google Scholar 

  • Degrandi D, Konermann C, Beuter-Gunia C, Kresse A, Wurthner J et al (2007) Extensive characterization of IFN-induced GTPases mGBP1 to mGBP10 involved in host defense. J Immunol 179:7729–7740

    CAS  PubMed  Google Scholar 

  • de Souza AP, Tang B, Tanowitz HB, Factor SM, Shtutin V, Shirani J, Taylor GA, Weiss LM, Jelicks LA (2003) Absence of interferon-gamma-inducible gene IGTP does not significantly alter the development of chagasic cardiomyopathy in mice infected with Trypanosoma cruzi (Brazil strain). J Parasitol 89:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Feng CG, Collazo-Custodio CM, Eckhaus M, Hieny S, Belkaid Y et al (2004) Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J Immunol 172:1163–1168

    CAS  PubMed  Google Scholar 

  • Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA (2008a) The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2:83–89

    Article  CAS  PubMed  Google Scholar 

  • Feng CG, Zheng L, Jankovic D, Bafica A, Cannons JL et al (2008b) The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T cell populations by preventing interferon-gamma-induced cell death. Nat Immunol 9:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Gao S, von der Malsburg A, Paeschke S, Behlke J, Haller O et al (2010) Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465:502–506

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Uthaiah R, Howard J, Herrmann C, Wolf E (2004) Crystal structure of IIGP1: a paradigm for interferon-inducible p47 resistance GTPases. Mol Cell 15:727–739

    Article  CAS  PubMed  Google Scholar 

  • Gilly M, Wall R (1992) The IRG-47 gene is IFN-gamma induced in B cells and encodes a protein with GTP-binding motifs. J Immunol 148:3275–3281

    CAS  PubMed  Google Scholar 

  • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI et al (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    Article  CAS  PubMed  Google Scholar 

  • Halonen SK (2009) Role of autophagy in the host defense against Toxoplasma gondii in astrocytes. Autophagy 5:268–269

    Article  CAS  PubMed  Google Scholar 

  • Halonen SK, Taylor GA, Weiss LM (2001) Gamma interferon-induced inhibition of Toxoplasma gondii in astrocytes is mediated by IGTP. Infect Immun 69:5573–5576

    Article  CAS  PubMed  Google Scholar 

  • Henry SC, Daniell X, Indaram M, Whitesides JF, Sempowski GD et al (2007) Impaired macrophage function underscores susceptibility to Salmonella in mice lacking Irgm1 (LRG-47). J Immunol 179:6963–6972

    CAS  PubMed  Google Scholar 

  • Henry SC, Daniell XG, Burroughs AR, Indaram M, Howell DN et al (2009) Balance of Irgm protein activities determines IFN-{gamma}-induced host defense. J Leukoc Biol 85:877–885

    Article  CAS  PubMed  Google Scholar 

  • Henry SC, Traver M, Daniell X, Indaram M, Oliver T et al (2010) Regulation of macrophage motility by Irgm1. J Leukoc Biol 87(2):333–343

    Article  CAS  PubMed  Google Scholar 

  • Howe DK, Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172:1561–1566

    CAS  PubMed  Google Scholar 

  • Hunn JP, Howard JC (2010) The mouse resistance protein Irgm1 (LRG-47): A regulator or an effector of pathogen defense? PLoS Pathog 6:e1001008

    Article  PubMed  Google Scholar 

  • Hunn JP, Koenen-Waisman S, Papic N, Schroeder N, Pawlowski N et al (2008) Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. EMBO J 27:2495–2509

    Article  CAS  PubMed  Google Scholar 

  • Intemann CD, Thye T, Niemann S, Browne EN, Amanua Chinbuah M et al (2009) Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog 5:e1000577

    Article  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Khaminets A, Hunn JP, Konen-Waisman S, Zhao YO, Preukschat D et al (2010) Coordinated loading of IRG resistance GTPases onto the Toxoplasma gondii parasitophorous vacuole. Cell Microbiol 12(7):939–961

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Fux B, Su C, Dubey JP, Darde ML et al (2007) Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome. Proc Natl Acad Sci USA 104:14872–14877

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Taylor S, Ajioka JW, Rosenthal BM, Sibley LD (2009) Selection at a single locus leads to widespread expansion of Toxoplasma gondii lineages that are virulent in mice. PLoS Genet 5:e1000404

    Article  PubMed  Google Scholar 

  • Koga R, Hamano S, Kuwata H, Atarashi K, Ogawa M, Hisaeda H, Yamamoto M, Akira S, Himeno K, Matsumoto M, Takeda K (2006) TLR-dependent induction of IFN-beta mediates host defense against Trypanosoma cruzi. J Immunol 177:7059–7066

    CAS  PubMed  Google Scholar 

  • Konen-Waisman S, Howard JC (2007) Cell-autonomous immunity to Toxoplasma gondii in mouse and man. Microbes Infect 9:1652–1661

    Article  PubMed  Google Scholar 

  • Lafuse WP, Brown D, Castle L, Zwilling BS (1995) Cloning and characterization of a novel cDNA that is IFN-gamma-induced in mouse peritoneal macrophages and encodes a putative GTP-binding protein. J Leukoc Biol 57:477–483

    CAS  PubMed  Google Scholar 

  • Li G, Zhang J, Sun Y, Wang H, Wang Y (2009) The evolutionarily dynamic IFN-inducible GTPase proteins play conserved immune functions in vertebrates and cephalochordates. Mol Biol Evol 26:1619–1630

    Article  CAS  PubMed  Google Scholar 

  • Ling YM, Shaw MH, Ayala C, Coppens I, Taylor GA et al (2006) Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J Exp Med 203:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654–659

    Article  CAS  PubMed  Google Scholar 

  • Martens S, Sabel K, Lange R, Uthaiah R, Wolf E et al (2004) Mechanisms regulating the positioning of mouse p47 resistance GTPases LRG-47 and IIGP1 on cellular membranes: retargeting to plasma membrane induced by phagocytosis. J Immunol 173:2594–2606

    CAS  PubMed  Google Scholar 

  • Martens S, Parvanova I, Zerrahn J, Griffiths G, Schell G et al (2005) Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog 1:e24

    Article  PubMed  Google Scholar 

  • McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A et al (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 40:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Melzer T, Duffy A, Weiss LM, Halonen SK (2008) The gamma interferon (IFN-gamma)-inducible GTP-binding protein IGTP is necessary for toxoplasma vacuolar disruption and induces parasite egression in IFN-gamma-stimulated astrocytes. Infect Immun 76:4883–4894

    Article  CAS  PubMed  Google Scholar 

  • Miyairi I, Tatireddigari VR, Mahdi OS, Rose LA, Belland RJ et al (2007) The p47 GTPases Iigp2 and Irgb10 regulate innate immunity and inflammation to murine Chlamydia psittaci infection. J Immunol 179:1814–1824

    CAS  PubMed  Google Scholar 

  • Nelson DE, Virok DP, Wood H, Roshick C, Johnson RM, Whitmire WM, Crane DD, Steele-Mortimer O, Kari L, McClarty G, Caldwell HD (2005) Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc Natl Acad Sci USA 102:10658–10663

    Article  CAS  PubMed  Google Scholar 

  • Orlofsky A (2009) Toxoplasma-induced autophagy: A window into nutritional futile cycles in mammalian cells? Autophagy 5(3):404–406

    Article  CAS  PubMed  Google Scholar 

  • Papic N, Hunn JP, Pawlowski N, Zerrahn J, Howard JC (2008) Inactive and active states of the interferon-inducible resistance GTPase, Irga6, in vivo. J Biol Chem 283:32143–32151

    Article  CAS  PubMed  Google Scholar 

  • Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832

    Article  CAS  PubMed  Google Scholar 

  • Pitossi F, Blank A, Schroder A, Schwarz A, Hussi P et al (1993) A functional GTP-binding motif is necessary for antiviral activity of Mx proteins. J Virol 67:6726–6732

    CAS  PubMed  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  CAS  PubMed  Google Scholar 

  • Praefcke GJ, Kloep S, Benscheid U, Lilie H, Prakash B et al (2004) Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis. J Mol Biol 344:257–269

    Article  CAS  PubMed  Google Scholar 

  • Prakash B, Praefcke GJ, Renault L, Wittinghofer A, Herrmann C (2000) Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403:567–571

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil TJ, Schmid SL (2008) Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135:1263–1275

    Article  CAS  PubMed  Google Scholar 

  • Santiago HC, Feng CG, Bafica A, Roffe E, Arantes RM et al (2005) Mice deficient in LRG-47 display enhanced susceptibility to Trypanosoma cruzi infection associated with defective hemopoiesis and intracellular control of parasite growth. J Immunol 175:8165–8172

    CAS  PubMed  Google Scholar 

  • Sibley LD, Ajioka JW (2008) Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps. Annu Rev Microbiol 62:329–351

    Article  CAS  PubMed  Google Scholar 

  • Sigal IS, Gibbs JB, D’Alonzo JS, Temeles GL, Wolanski BS et al (1986) Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc Natl Acad Sci USA 83:952–956

    Article  CAS  PubMed  Google Scholar 

  • Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441

    Article  CAS  PubMed  Google Scholar 

  • Sorace JM, Johnson RJ, Howard DL, Drysdale BE (1995) Identification of an endotoxin and IFN-inducible cDNA: possible identification of a novel protein family. J Leukoc Biol 58:477–484

    CAS  PubMed  Google Scholar 

  • Sweitzer SM, Hinshaw JE (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Taylor GA (2007) IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens. Cell Microbiol 9:1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Taylor GA, Jeffers M, Largaespada DA, Jenkins NA, Copeland NG et al (1996) Identification of a novel GTPase, the inducibly expressed GTPase, that accumulates in response to interferon gamma. J Biol Chem 271:20399–20405

    Article  CAS  PubMed  Google Scholar 

  • Taylor GA, Stauber R, Rulong S, Hudson E, Pei V et al (1997) The inducibly expressed GTPase localizes to the endoplasmic reticulum, independently of GTP binding. J Biol Chem 272:10639–10645

    Article  CAS  PubMed  Google Scholar 

  • Taylor GA, Collazo CM, Yap GS, Nguyen K, Gregorio TA et al (2000) Pathogen-specific loss of host resistance in mice lacking the IFN-gamma-inducible gene IGTP. Proc Natl Acad Sci USA 97:751–755

    Article  CAS  PubMed  Google Scholar 

  • Taylor GA, Feng CG, Sher A (2004) p47 GTPases: regulators of immunity to intracellular pathogens. Nat Rev Immunol 4:100–109

    Article  CAS  PubMed  Google Scholar 

  • Taylor S, Barragan A, Su C, Fux B, Fentress SJ et al (2006) A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314:1776–1780

    Article  CAS  PubMed  Google Scholar 

  • Taylor GA, Feng CG, Sher A (2007) Control of IFN-gamma-mediated host resistance to intracellular pathogens by immunity-related GTPases (p47 GTPases). Microbes Infect 9:1644–1651

    Article  CAS  PubMed  Google Scholar 

  • Tuma PL, Collins CA (1994) Activation of dynamin GTPase is a result of positive cooperativity. J Biol Chem 269:30842–30847

    CAS  PubMed  Google Scholar 

  • Uthaiah RC, Praefcke GJ, Howard JC, Herrmann C (2003) IIGP1, an interferon-gamma-inducible 47-kDa GTPase of the mouse, showing cooperative enzymatic activity and GTP-dependent multimerization. J Biol Chem 278:29336–29343

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Weiss LM, Orlofsky A (2009) Host cell autophagy is induced by Toxoplasma gondii and contributes to parasite growth. J Biol Chem 284:1694–1701

    Article  CAS  PubMed  Google Scholar 

  • Warnock DE, Hinshaw JE, Schmid SL (1996) Dynamin self-assembly stimulates its GTPase activity. J Biol Chem 271:22310–22314

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Parvanova IA, Howard JC (2009) A dedicated promoter drives constitutive expression of the cell-autonomous immune resistance GTPase, Irga6 (IIGP1), in mouse liver. PLoS One 4:e6787

    Article  PubMed  Google Scholar 

  • Zhao Z, Fux B, Goodwin M, Dunay IR, Strong D et al (2008) Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4:458–469

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ferguson DJ, Wilson DC, Howard JC, Sibley LD et al (2009a) Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages. J Immunol 182:3775–3781

    Article  CAS  PubMed  Google Scholar 

  • Zhao YO, Khaminets A, Hunn JP, Howard JC (2009b) Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog 5:e1000288

    Article  PubMed  Google Scholar 

  • Zhao YO, Rohde C, Lilue JT, Konen-Waisman S, Khaminets A et al (2009c) Toxoplasma gondii and the Immunity-Related GTPase (IRG) resistance system in mice: a review. Mem Inst Oswaldo Cruz 104:234–240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JCH and JPH were supported by SFB635, SFB670, SFB680 and SPP1399 from the Deutsche Forschungsgemeinschaft; and CGF and AS were supported by the Intramural Research Program of the NIAID, NIH. We are grateful to our colleague Gregory Taylor for his pioneering work on the IRG system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Howard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunn, J.P., Feng, C.G., Sher, A. et al. The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens. Mamm Genome 22, 43–54 (2011). https://doi.org/10.1007/s00335-010-9293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-010-9293-3

Keywords

Navigation