Skip to main content
Log in

Imprinting evolution and human health

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Genomic imprinting results in parent-of-origin-dependent, monoallelic expression of genes. The functional haploid state of these genes has far-reaching consequences. Not only has imprinting been implicated in accelerating mammalian speciation, there is growing evidence that it is also involved in the pathogenesis of several human conditions, particularly cancer and neurological disorders. Epigenetic regulatory mechanisms govern the parental allele-specific silencing of imprinted genes, and many theories have attempted to explain the driving force for the evolution of this unique form of gene control. This review discusses the evolution of imprinting in Therian mammals, and the importance of imprinted genes in human health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ager E, Suzuki S, Pask A, Shaw G, Ishino F et al (2007) Insulin is imprinted in the placenta of the marsupial, Macropus eugenii. Dev Biol 309:317–328

    Article  CAS  PubMed  Google Scholar 

  • Ager EI, Pask AJ, Gehring HM, Shaw G, Renfree MB (2008) Evolution of the CDKN1C-KCNQ1 imprinted domain. BMC Evol Biol 8:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnaud P, Feil R (2005) Epigenetic deregulation of genomic imprinting in human disorders and following assisted reproduction. Birth Defects Res C Embryo Today 75:81–97

    Article  CAS  PubMed  Google Scholar 

  • Badcock C (2009) The imprinted brain: how genes set the balance between autism and psychosis. Jessica Kingsley, London

    Google Scholar 

  • Badcock C, Crespi B (2006) Imbalanced genomic imprinting in brain development: an evolutionary basis for the aetiology of autism. J Evol Biol 19:1007–1032

    Article  CAS  PubMed  Google Scholar 

  • Barel O, Shalev SA, Ofir R, Cohen A, Zlotogora J, Shorer Z, Mazor G, Finer G, Khateeb S, Zilberberg N, Birk OS (2008) Maternally inherited Birk-Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am J Hum Genet 83:193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow DP (1993) Methylation and imprinting: from host defense to gene regulation? Science 260:309–310

    Article  CAS  PubMed  Google Scholar 

  • Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87

    Article  CAS  PubMed  Google Scholar 

  • Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376

    Article  CAS  PubMed  Google Scholar 

  • Blaxill MF (2004) What’s going on? The question of time trends in autism. Public Health Rep 119:536–551

    Article  PubMed  PubMed Central  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    Article  CAS  PubMed  Google Scholar 

  • Der G, Gupta S, Murray RM (1990) Is schizophrenia disappearing? Lancet 335:513–516

    Article  CAS  PubMed  Google Scholar 

  • Eggermann T, Eggermann K, Schonherr N (2008) Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet 24:195–204

    Article  CAS  PubMed  Google Scholar 

  • Evans HK, Weidman JR, Cowley DO, Jirtle RL (2005) Comparative phylogenetic analysis of blcap/nnat reveals eutherian-specific imprinted gene. Mol Biol Evol 22:1740–1748

    Article  CAS  PubMed  Google Scholar 

  • Falls JG, Pulford DJ, Wylie AA, Jirtle RL (1999) Genomic imprinting: implications for human disease. Am J Pathol 154:635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg AP (2005) A genetic approach to cancer epigenetics. Cold Spring Harb Symp Quant Biol 70:335–341

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP (2007) An epigenetic approach to cancer etiology. Cancer J 13:70–74

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  CAS  PubMed  Google Scholar 

  • Garnier O, Laoueille-Duprat S, Spillane C (2008) Genomic imprinting in plants. Epigenetics 3:14–20

    Article  PubMed  Google Scholar 

  • Gottschling DE (2004) Summary: epigenetics—from phenomenon to field. Cold Spring Harb Symp Quant Biol 69:507–519

    Article  CAS  PubMed  Google Scholar 

  • Haig D (2004) Genomic imprinting and kinship: how good is the evidence? Annu Rev Genet 38:553–585

    Article  CAS  PubMed  Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64:1045–1046

    Article  CAS  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann A, Gowher H, Jeltsch A (2004) Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 61:2571–2587

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AR, Vu TH, Hu J (2000) Mechanisms of genomic imprinting. Growth Horm IGF Res 10(Suppl A):S18–S19

    Article  PubMed  Google Scholar 

  • Hunter P (2007) The silence of genes. Is genomic imprinting the software of evolution or just a battleground for gender conflict? EMBO Rep 8:441–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YH, Bressler J, Beaudet AL (2004) Epigenetics and human disease. Annu Rev Genomics Hum Genet 5:479–510

    Article  CAS  PubMed  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirtle RL, Weidman JR (2007) Imprinted and more equal. Am Sci 95:143–149

    Article  Google Scholar 

  • Kananura C, Sander T, Rajan S, Preisig-Muller R, Grzeschik KH et al (2002) Tandem pore domain K(+)-channel TASK-3 (KCNK9) and idiopathic absence epilepsies. Am J Med Genet 114:227–229

    Article  PubMed  Google Scholar 

  • Kaneko-Ishino T, Kohda T, Ono R, Ishino F (2006) Complementation hypothesis: the necessity of a monoallelic gene expression mechanism in mammalian development. Cytogenet Genome Res 113:24–30

    Article  CAS  PubMed  Google Scholar 

  • Keverne EB (2001) Genomic imprinting and the maternal brain. Prog Brain Res 133:279–285

    Article  CAS  PubMed  Google Scholar 

  • Khosla S, Mendiratta G, Brahmachari V (2006) Genomic imprinting in the mealybugs. Cytogenet Genome Res 113:41–52

    Article  CAS  PubMed  Google Scholar 

  • Killian JK, Byrd JC, Jirtle JV, Munday BL, Stoskopf MK et al (2000) M6p/igf2r imprinting evolution in mammals. Mol Cell 5:707–716

    Article  CAS  PubMed  Google Scholar 

  • Killian JK, Nolan CM, Stewart N, Munday BL, Andersen NA et al (2001a) Monotreme IGF2 expression and ancestral origin of genomic imprinting. J Exp Zool 291:205–212

    Article  CAS  PubMed  Google Scholar 

  • Killian JK, Nolan CM, Wylie AA, Li T, Vu TH et al (2001b) Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet 10:1721–1728

    Article  CAS  PubMed  Google Scholar 

  • Kim CJ, Cho YG, Jeong SW, Kim YS, Kim SY et al (2004) Altered expression of KCNK9 in colorectal cancers. APMIS 112:588–594

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Samaranayake M, Pradhan S (2009) Epigenetic mechanisms in mammals. Cell Mol Life Sci 66:596–612

    Article  CAS  PubMed  Google Scholar 

  • Kinugawa K, Vidailhet M, Clot F, Apartis E, Grabli D et al (2009) Myoclonus-dystonia: an update. Mov Disord 24:479–489

    Article  PubMed  Google Scholar 

  • Klenova EM, Morse HCr, Ohlsson R, Lobanenkov VV (2002) The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer. Semin Cancer Biol 12:399–414

    Article  CAS  PubMed  Google Scholar 

  • Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162

    Article  CAS  PubMed  Google Scholar 

  • Kono T (2006) Genomic imprinting is a barrier to parthenogenesis in mammals. Cytogenet Genome Res 113:31–35

    Article  CAS  PubMed  Google Scholar 

  • Lalande M, Calciano MA (2007) Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci 64:947–960

    Article  CAS  PubMed  Google Scholar 

  • Lawton BR, Carone BR, Obergfell CJ, Ferreri GC, Gondolphi CM et al (2008) Genomic imprinting of IGF2 in marsupials is methylation dependent. BMC Genomics 9:205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leung KN, Vallero RO, Dubose AJ, Resnick JL, Lasalle JM (2009) Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size. Hum Mol Genet [Epub ahead of print]

  • Lewis A, Reik W (2006) How imprinting centres work. Cytogenet Genome Res 113:81–89

    Article  CAS  PubMed  Google Scholar 

  • Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL et al (2007) Computational and experimental identification of novel human imprinted genes. Genome Res 17:1723–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luedi PP, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  CAS  PubMed  Google Scholar 

  • McInnis MG, Lan TH, Willour VL, McMahon FJ, Simpson SG et al (2003) Genome-wide scan of bipolar disorder in 65 pedigrees: supportive evidence for linkage at 8q24, 18q22, 4q32, 2p12, and 13q12. Mol Psychiatry 8:288–298

    Article  CAS  PubMed  Google Scholar 

  • McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633

    Article  CAS  PubMed  Google Scholar 

  • Meuth SG, Herrmann AM, Ip CW, Kanyshkova T, Bittner S et al (2008) The two-pore domain potassium channel TASK3 functionally impacts glioma cell death. J Neurooncol 87:263–270

    Article  CAS  PubMed  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49

    Article  CAS  PubMed  Google Scholar 

  • Morgan DK, Whitelaw E (2009) The role of epigenetics in mediating environmental effects on phenotype. Nestle Nutr Workshop Ser Pediatr Program 63:109–117

    Article  PubMed  Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  CAS  PubMed  Google Scholar 

  • Mu D, Chen L, Zhang X, See LH, Koch CM et al (2003) Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297–302

    Article  CAS  PubMed  Google Scholar 

  • Muller U (2009) The monogenic primary dystonias. Brain 132:2005–2025

    Article  PubMed  Google Scholar 

  • Murphy SK, Jirtle RL (2003) Imprinting evolution and the price of silence. Bioessays 25:577–588

    Article  CAS  PubMed  Google Scholar 

  • Niemitz EL, Feinberg AP (2004) Epigenetics and assisted reproductive technology: a call for investigation. Am J Hum Genet 74:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan CM, Killian JK, Petitte JN, Jirtle RL (2001) Imprint status of M6P/IGF2R and IGF2 in chickens. Dev Genes Evol 211:179–183

    Article  CAS  PubMed  Google Scholar 

  • O’Neill MJ, Ingram RS, Vrana PB, Tilghman SM (2000) Allelic expression of IGF2 in marsupials and birds. Dev Genes Evol 210:18–20

    Article  PubMed  Google Scholar 

  • O’Sullivan FM, Murphy SK, Simel LR, McCann A, Callanan JJ et al (2007) Imprinted expression of the canine IGF2R, in the absence of an anti-sense transcript or promoter methylation. Evol Dev 9:579–589

    Article  PubMed  Google Scholar 

  • Ooi SL, Henikoff S (2007) Germline histone dynamics and epigenetics. Curr Opin Cell Biol 19:257–265

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Beechey C (2004) Identification and characterisation of imprinted genes in the mouse. Brief Funct Genomic Proteomic 2:320–333

    Article  CAS  PubMed  Google Scholar 

  • Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E (2002) Metastable epialleles in mammals. Trends Genet 18:348–351

    Article  CAS  PubMed  Google Scholar 

  • Rapkins RW, Hore T, Smithwick M, Ager E, Pask AJ et al (2006) Recent assembly of an imprinted domain from non-imprinted components. PLoS Genet 2:e182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reik W, Lewis A (2005) Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 6:403–410

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  CAS  PubMed  Google Scholar 

  • Reinhart B, Chaillet JR (2005) Genomic imprinting: cis-acting sequences and regional control. Int Rev Cytol 243:173–213

    Article  CAS  PubMed  Google Scholar 

  • Renfree MB, Ager EI, Shaw G, Pask AJ (2008) Genomic imprinting in marsupial placentation. Reproduction 136:523–531

    Article  CAS  PubMed  Google Scholar 

  • Renfree MB, Hore TA, Shaw G, Graves JA, Pask AJ (2009) Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet 10:241–262

    Article  CAS  PubMed  Google Scholar 

  • Ruf N, Bahring S, Galetzka D, Pliushch G, Luft FC et al (2007) Sequence-based bioinformatic prediction and QUASEP identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human. Hum Mol Genet 16:2591–2599

    Article  CAS  PubMed  Google Scholar 

  • Schoenherr CJ, Levorse JM, Tilghman SM (2003) CTCF maintains differential methylation at the Igf2/H19 locus. Nat Genet 33:66–69

    Article  CAS  PubMed  Google Scholar 

  • Scott RJ, Spielman M (2006) Genomic imprinting in plants and mammals: how life history constrains convergence. Cytogenet Genome Res 113:53–67

    Article  CAS  PubMed  Google Scholar 

  • Shibata H, Yoshino K, Sunahara S, Gondo Y, Katsuki M et al (1996) Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11. Genomics 35:248–252

    Article  CAS  PubMed  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    Article  CAS  PubMed  Google Scholar 

  • Smits G, Mungall AJ, Griffiths-Jones S, Smith P, Beury D et al (2008) Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat Genet 40:971–976

    Article  CAS  PubMed  Google Scholar 

  • Smrzka OW, Fae I, Stoger R, Kurzbauer R, Fischer GF et al (1995) Conservation of a maternal-specific methylation signal at the human IGF2R locus. Hum Mol Genet 4:1945–1952

    Article  CAS  PubMed  Google Scholar 

  • St Clair D, Xu M, Wang P, Yu Y, Fang Y et al (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294:557–562

    Article  CAS  PubMed  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    Article  CAS  PubMed  Google Scholar 

  • Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S et al (1996) Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 53:25–31

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Renfree MB, Pask AJ, Shaw G, Kobayashi S et al (2005) Genomic imprinting of IGF2, p57(KIP2) and PEG1/MEST in a marsupial, the tammar wallaby. Mech Dev 122:213–222

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Ono R, Narita T, Pask AJ, Shaw G et al (2007) Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet 3:e55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Temple IK, Shield JP (2002) Transient neonatal diabetes, a disorder of imprinting. J Med Genet 39:872–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson MB, Speake BK (2006) A review of the evolution of viviparity in lizards: structure, function and physiology of the placenta. J Comp Physiol B 176:179–189

    Article  PubMed  Google Scholar 

  • Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18(21):4046–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turek-Plewa J, Jagodzinski PP (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 10:631–647

    CAS  PubMed  Google Scholar 

  • Vrana PB, Guan XJ, Ingram RS, Tilghman SM (1998) Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet 20:362–365

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Paulsen M (2003) The potential role of gene duplications in the evolution of imprinting mechanisms. Hum Mol Genet 12(Spec No 2):R215–R220

    Article  CAS  PubMed  Google Scholar 

  • Wan LB, Bartolomei MS (2008) Regulation of imprinting in clusters: noncoding RNAs versus insulators. Adv Genet 61:207–223

    Article  CAS  PubMed  Google Scholar 

  • Weidman JR, Murphy SK, Nolan CM, Dietrich FS, Jirtle RL (2004) Phylogenetic footprint analysis of IGF2 in extant mammals. Genome Res 14:1726–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidman JR, Dolinoy DC, Maloney KA, Cheng JF, Jirtle RL (2006a) Imprinting of opossum Igf2r in the absence of differential methylation and air. Epigenetics 1:49–54

    Article  PubMed  Google Scholar 

  • Weidman JR, Maloney KA, Jirtle RL (2006b) Comparative phylogenetic analysis reveals multiple non-imprinted isoforms of opossum Dlk1. Mamm Genome 17:157–167

    Article  CAS  PubMed  Google Scholar 

  • Weisstein AE, Feldman MW, Spencer HG (2002) Evolutionary genetic models of the ovarian time bomb hypothesis for the evolution of genomic imprinting. Genetics 162:425–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins JF, Haig D (2001) Genomic imprinting of two antagonistic loci. Proc Biol Sci 268:1861–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood AJ, Oakey RJ (2006) Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet 2:e147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woogh C (2001) Is schizophrenia on the decline in Canada? Can J Psychiatry 46:61–67

    Article  CAS  PubMed  Google Scholar 

  • Wylie AA, Murphy SK, Orton TC, Jirtle RL (2000) Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res 10:1711–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grant 5R01-ES008823, DOE DE-FG02-05ER64101, and an Esther B. O’Keeffe Charitable Foundation Award. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy L. Jirtle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, R., Hampton, D.D. & Jirtle, R.L. Imprinting evolution and human health. Mamm Genome 20, 563–572 (2009). https://doi.org/10.1007/s00335-009-9229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9229-y

Keywords

Navigation