Skip to main content

Advertisement

Log in

The gastrointestinal microbiome: a malleable, third genome of mammals

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The nonpathogenic, mutualistic bacteria of the mammalian gastrointestinal tract provide a number of benefits to the host. Recent reports have shown how the aggregate genomes of gastrointestinal bacteria provide novel benefits by functioning as the third major genome in mammals along with the nuclear and mitochondrial genomes. Consequently, efforts are underway to elucidate the complexity of the organisms comprising the unique ecosystem of the gastrointestinal tract, as well as those associated with other epidermal surfaces. The current knowledge of the gastrointestinal microbiome, its relationship to human health and disease with a particular focus on mammalian physiology, and efforts to alter its composition as a novel therapeutic approach are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander DA, Orcutt RP, Henry JC, Baker J Jr, Bissahoyo AC et al (2006) Quantitative PCR assays for mouse enteric flora reveal strain-dependent differences in composition that are influenced by the microenvironment. Mamm Genome 17:1093–1104

    Article  CAS  Google Scholar 

  • Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL et al (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA 102:3906–3912

    Article  PubMed  CAS  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  CAS  Google Scholar 

  • Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104:979–984

    Article  PubMed  CAS  Google Scholar 

  • Balamurugan R, Rajendiran E, George S, Samuel GV, Ramakrishna BS (2008) Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis, in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 23:1298–1303

    Article  PubMed  CAS  Google Scholar 

  • Bauer E, Williams BA, Smidt H, Verstegen MW, Mosenthin R (2006) Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr Issues Intest Microbiol 7:35–51

    PubMed  CAS  Google Scholar 

  • Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P et al (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599

    Article  PubMed  CAS  Google Scholar 

  • Bernet-Camard MF, Lievin V, Brassart D, Neeser JR, Servin AL et al (1997) The human Lactobacillus acidophilus strain LA1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Appl Environ Microbiol 63:2747–2753

    PubMed  CAS  Google Scholar 

  • Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P et al (2005) VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 100:1539–1546

    Article  PubMed  Google Scholar 

  • Bibiloni R, Mangold M, Madsen KL, Fedorak RN, Tannock GW (2006) The bacteriology of biopsies differs between newly diagnosed, untreated Crohn’s disease and ulcerative colitis patients. J Med Microbiol 55:1141–1149

    Article  PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC et al (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage-specific glycoside hydrolases. Proc Natl Acad Sci USA 106:1948–1953

    Article  PubMed  CAS  Google Scholar 

  • Brunham RC, Plummer FA, Stephens RS (1993) Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect Immun 61:2273–2276

    PubMed  CAS  Google Scholar 

  • Carroll IM, Andrus JM, Bruno-Barcena JM, Klaenhammer TR, Hassan HM et al (2007) Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse models of colitis. Am J Physiol Gastrointest Liver Physiol 293:G729–G738

    Article  PubMed  CAS  Google Scholar 

  • Chang TL, Chang CH, Simpson DA, Xu Q, Martin PK et al (2003) Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two-domain CD4. Proc Natl Acad Sci USA 100:11672–11677

    Article  PubMed  CAS  Google Scholar 

  • Claus SP, Tsang TM, Wang Y, Cloarec O, Skordi E et al (2008) Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol 4:219

    Article  PubMed  CAS  Google Scholar 

  • Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK et al (2009) Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci USA [Epub ahead of print]

  • Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818

    Article  PubMed  CAS  Google Scholar 

  • Dove WF, Clipson L, Gould KA, Luongo C, Marshall DJ et al (1997) Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res 57:812–814

    PubMed  CAS  Google Scholar 

  • Drouault S, Juste C, Marteau P, Renault P, Corthier G (2002) Oral treatment with Lactococcus lactis expressing Staphylococcus hyicus lipase enhances lipid digestion in pigs with induced pancreatic insufficiency. Appl Environ Microbiol 68:3166–3168

    Article  PubMed  CAS  Google Scholar 

  • Dumas ME, Barton RH, Tove A, Cloarec O, Blancher C et al (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA 103:12511–12516

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ et al (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078

    Article  PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  • Engle SJ, Ormsby I, Pawlowski S, Boivin GP, Croft J et al (2002) Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res 62:6362–6366

    PubMed  CAS  Google Scholar 

  • Erdman SE, Rao VP, Poutahidis T, Rogers AB, Taylor CL et al (2009) Nitric oxide and TNF-alpha trigger colonic inflammation and carcinogenesis in Helicobacter hepaticus-infected, Rag2-deficient mice. Proc Natl Acad Sci USA 106:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–13785

    Article  PubMed  CAS  Google Scholar 

  • Gawronska A, Dziechciarz P, Horvath A, Szajewska H (2007) A randomized double-blind placebo-controlled trial of Lactobacillus GG abdominal pain disorders in children. Aliment Pharmacol Ther 25:177–184

    PubMed  CAS  Google Scholar 

  • Ge Z, Feng Y, Taylor NS, Ohtani M, Polz MF et al (2006) Colonization dynamics of altered Schaedler flora is influenced by gender, aging, and Helicobacter hepaticus infection in the intestines of Swiss Webster mice. Appl Environ Microbiol 72:5100–5103

    Article  PubMed  CAS  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R (2007) Metabolomics of a superorganism. J Nutr 137:259S–266S

    PubMed  CAS  Google Scholar 

  • Gotteland M, Cruchet S, Verbeke S (2001) Effect of Lactobacillus ingestion on the gastrointestinal mucosal barrier alterations induced by indometacin in humans. Aliment Pharmacol Ther 15:11–17

    Article  PubMed  CAS  Google Scholar 

  • Grice EA, Kong HH, Conlan S, Deming CB, Davis J et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  PubMed  CAS  Google Scholar 

  • Guyonnet D, Chassany O, Ducrotte P, Picard C, Mouret M et al (2007) Effect of a fermented milk containing Bifidobacterium animalis DN-173 010 on the health-related quality of life and symptoms in irritable bowel syndrome in adults in primary care: a multicentre, randomized, double-blind, controlled trial. Aliment Pharmacol Ther 26:475–486

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y (2005) Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD et al (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123

    Article  PubMed  CAS  Google Scholar 

  • Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L et al (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33

    Article  PubMed  CAS  Google Scholar 

  • Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    Article  PubMed  CAS  Google Scholar 

  • Lederberg J (2000) Infectious history. Science 288:287–293

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Li M, Wang B, Zhang M, Rantalainen M, Wang S et al (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105:2117–2122

    Article  PubMed  CAS  Google Scholar 

  • Liebregts T, Adam B, Bredack C, Roth A, Heinzel S et al (2007) Immune activation in patients with irritable bowel syndrome. Gastroenterology 132:913–920

    Article  PubMed  CAS  Google Scholar 

  • Linz B, Balloux F, Moodley Y, Manica A, Liu H et al (2007) An African origin for the intimate association between humans and Helicobacter pylori. Nature 445:915–918

    Article  PubMed  Google Scholar 

  • Maggio-Price L, Treuting P, Zeng W, Tsang M, Bielefeldt-Ohmann H et al (2006) Heliobacter infection is required for inflammation and colon cancer in SMAD3-deficient mice. Cancer Res 66:828–838

    Article  PubMed  CAS  Google Scholar 

  • Mariat D, Firmesse O, Levenez F, Guimaraes VD, Sokol H et al (2009) The Firmicutes/Bacteroides ratio of the human microbiota changes with age. BMC Microbiol 9:123

    Article  PubMed  CAS  Google Scholar 

  • Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK et al (2007) A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 3:112

    Article  PubMed  CAS  Google Scholar 

  • Martinez I, Wallace G, Zhang C, Legge R, Benson AK et al (2009) Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 75:4175–4184

    Article  PubMed  CAS  Google Scholar 

  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  PubMed  CAS  Google Scholar 

  • Meinl W, Sczesny S, Brigelius-Flohe R, Blaut M, Glatt H (2009) Impact of gut microbiota on intestinal and hepatic levels of phase 2 xenobiotic-metabolizing enzymes in the rat. Drug Metab Dispos 37:1179–1186

    Article  PubMed  CAS  Google Scholar 

  • Metchnikoff E (1908) The prolongation of life: optimistic studies. G. P. Putnam’s Sons, New York

    Google Scholar 

  • Nasidze I, Li J, Quinque D, Tang K, Stoneking M (2009) Global diversity in the human salivary microbiome. Genome Res 19:636–643

    Article  PubMed  CAS  Google Scholar 

  • Nicholls AW, Mortishire-Smith RJ, Nicholson JK (2003) NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem Res Toxicol 16:1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Nones K, Knoch B, Dommels YE, Paturi G, Butts C et al (2009) Multidrug resistance gene deficient (mdr1a (-/-)) mice have an altered caecal microbiota that precedes the onset of intestinal inflammation. J Appl Microbiol [Epub ahead of print]

  • Noverr MC, Falkowski NR, McDonald RA, McKenzie AN, Huffnagle GB (2005) Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect Immun 73:30–38

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe SJ, Chung D, Mahmoud N, Sepulveda AR, Manafe M et al (2007) Why do African Americans get more colon cancer than Native Africans? J Nutr 137:175S–182S

    PubMed  Google Scholar 

  • O’Mahony L, Feeney M, O’Halloran S, Murphy L, Kiely B et al (2001) Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment Pharmacol Ther 15:1219–1225

    Article  PubMed  Google Scholar 

  • O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F et al (2005) Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551

    Article  PubMed  Google Scholar 

  • Ordovas JM, Mooser V (2006) Metagenomics: the role of the microbiome in cardiovascular disease. Curr Opin Lipidol 17:157–161

    Article  PubMed  CAS  Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289

    Article  PubMed  CAS  Google Scholar 

  • Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microbiota of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54:987–991

    Article  PubMed  Google Scholar 

  • Peran L, Camuesco D, Comalada M, Nieto A, Concha A et al (2005) Preventative effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis. World J Gastroenterol 11:5185–5192

    PubMed  Google Scholar 

  • Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C et al (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101:2512–2517

    Article  PubMed  CAS  Google Scholar 

  • Prisciandaro L, Geier M, Butler R, Cummins A, Howarth G (2009) Probiotics and their derivatives as treatments for inflammatory bowel disease. Inflamm Bowel Dis [Epub ahead of print]

  • Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    Article  PubMed  CAS  Google Scholar 

  • Quigley EM (2006) Germs, gas and the gut; the evolving role of the enteric flora in IBS. Am J Gastroenterol 101:334–335

    Article  PubMed  Google Scholar 

  • Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G et al (2006) The human obesity gene map: the 2005 update. Obesity (Silver Spring) 14:529–644

    Article  Google Scholar 

  • Rao VP, Poutahidis T, Ge Z, Nambiar PR, Boussahmain C et al (2006) Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Res 66:7395–7400

    Article  PubMed  CAS  Google Scholar 

  • Ringel Y, Sperber AD, Drossman DA (2001) Irritable bowel syndrome. Annu Rev Med 52:319–338

    Article  PubMed  CAS  Google Scholar 

  • Rowland IR, Mallett AK, Wise A (1985) The effect of diet on the mammalian gut flora and its metabolic activities. Crit Rev Toxicol 16:31–103

    Article  PubMed  CAS  Google Scholar 

  • Sarma-Rupavtarm RB, Ge Z, Schauer DB, Fox JG, Polz MF (2004) Spatial distribution and stability of the eight microbial species of the altered schaedler flora in the mouse gastrointestinal tract. Appl Environ Microbiol 70:2791–2800

    Article  PubMed  CAS  Google Scholar 

  • Sartor RB (1997) The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol 148:567–576

    Article  PubMed  CAS  Google Scholar 

  • Seegers JF (2002) Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol 20:508–515

    Article  PubMed  CAS  Google Scholar 

  • Sela DA, Chapman J, Adeuya A, Kim JH, Chen F et al (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 105:18964–18969

    Article  PubMed  CAS  Google Scholar 

  • Shreiner A, Huffnagle GB, Noverr MC (2008) The “Microbiota Hypothesis” of allergic disease. Adv Exp Med Biol 635:113–134

    Article  PubMed  Google Scholar 

  • Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F et al (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355

    Article  PubMed  CAS  Google Scholar 

  • Stewart JA, Chadwick VS, Murray A (2005) Investigations into the influence of host genetics on the predominant eubacteria in the faecal microbiota of children. J Med Microbiol 54:1239–1242

    Article  PubMed  CAS  Google Scholar 

  • Swann J, Wang Y, Abecia L, Costabile A, Tuohy K et al (2009) Gut microbiome modulates the toxicity of hydrazine: a metabonomic study. Mol Biosyst 5:351–355

    Article  PubMed  CAS  Google Scholar 

  • Talley NJ (2006) Irritable bowel syndrome. Intern Med J 36:724–728

    Article  PubMed  CAS  Google Scholar 

  • Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J et al (2000) Analysis of the fecal microbiota of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588

    Article  PubMed  CAS  Google Scholar 

  • Thompson GR, Trexler PC (1971) Gastrointestinal structure and function in germ-free or gnotobiotic animals. Gut 12:230–235

    Article  PubMed  CAS  Google Scholar 

  • Tito RY, Macmil S, Wiley G, Najar F, Cleeland L et al (2008) Phylotyping and functional analysis of two ancient human microbiomes. PLoS ONE 3:e3703

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R et al (2007) The human microbiome project. Nature 449:804–810

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    Article  PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  PubMed  CAS  Google Scholar 

  • Uronis JM, Muhlbauer M, Herfarth HH, Rubinas TC, Jones GS et al (2009) Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE 4:e6026

    Article  PubMed  CAS  Google Scholar 

  • Van de Merwe JP, Stegeman JH, Hazenberg MP (1983) The resident faecal flora is determined by genetic characteristics of the host. Implications for Crohn’s disease? Antonie Van Leeuwenhoek 49:119–124

    Article  PubMed  Google Scholar 

  • Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P et al (2004) Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127:502–513

    Article  PubMed  CAS  Google Scholar 

  • Vinderola G, Matar C, Perdigon G (2005) Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of toll-like receptors. Clin Diagn Lab Immunol 12:1075–1084

    PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA et al (2008) Metabolomics analysis reveals large effects of gut microbiota on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703

    Article  Google Scholar 

  • Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK et al (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M et al (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:e156

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Westman R, Hickey R, Hansmann MA, Kennedy C et al (2009) Vaginal microbiota of women with frequent vulvovaginal candidiasis. Infect Immun [Epub ahead of print]

  • Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, de Visser JAGM, de Vos WM (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by NCI Grants CA084239 and CA105417 and NIDDK center Grant DK34987.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah S. Threadgill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, I.M., Threadgill, D.W. & Threadgill, D.S. The gastrointestinal microbiome: a malleable, third genome of mammals. Mamm Genome 20, 395–403 (2009). https://doi.org/10.1007/s00335-009-9204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9204-7

Keywords

Navigation