Skip to main content
Log in

Quantitative trait loci for porcine baseline erythroid traits at three growth ages in a White Duroc × Erhualian F2 resource population

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Baseline erythroid indices are increasingly involved as risk factors for common complex diseases in humans. However, little is known about the genetic architecture of baseline erythroid traits in pigs. In this study, hematocrit (Hct), hemoglobin (Hgb), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell (RBC), and red cell distribution width (RDW) were measured in 1420 (day 18), 1410 (day 46), and 1033 (day 240) F2 pigs from a White Duroc × Erhualian intercross resource population. The entire resource population was genotyped for 183 microsatellite loci across the pig genome, and the quantitative trait loci (QTL) analysis was performed for all erythroid-related traits measured with QTL Express based on a least-squares method. A total of 101 QTL, including 46 genome-wide significant QTL and 55 chromosome-wide significant QTL, regulating erythroid traits were found on all pig chromosomes (SSC) except for SSC15 and SSC18. The genome-wide significant QTL were mainly localized on SSC1, 7, 8, 10, and X. These results confirmed most of QTL previously identified in the swine. More importantly, this study detected age-specific QTL for baseline erythroid traits in pigs for the first time. Notably, the QTL for MCV and MCH on day 18 on SSC8 with small intervals of 3 and 4 cM, respectively, provided a good starting point for identifying causal genes underlying MCV and MCH in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M et al (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771–1774

    Article  PubMed  CAS  Google Scholar 

  • Bidanel JP, Rothschild MF (2002) Current status of quantitative trait loci mapping in pigs. Pig News Inf 23:N39–N54

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Edfors-Lilja I, Wattrang E, Marklund L, Moller M, Andersson-Eklund L et al (1998) Mapping quantitative trait loci for immune capacity in the pig. J Immunol 161:829–835

    PubMed  CAS  Google Scholar 

  • Evans DM, Frazer IH, Martin NG (1999) Genetic and environmental causes of variation in basal levels of blood cells. Twin Res 2:250–257

    Article  PubMed  CAS  Google Scholar 

  • Gagnon DR, Zhang TJ, Brand FN, Kannel WB (1994) Hematocrit and the risk of cardiovascular disease—the Framingham study: a 34-year follow-up. Am Heart J 127:674–682

    Article  PubMed  CAS  Google Scholar 

  • Guo YM, Mao HR, Ren J, Yan XM, Duan YY et al (2008) A comprehensive linkage map of the porcine genome from a large scale White Duroc × Erhualian resource population and evaluation of factors affecting recombination rates. Anim Genet 39 (Accepted)

  • Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195–1207

    PubMed  CAS  Google Scholar 

  • Haltmayer M, Mueller T, Luft C, Poelz W, Haidinger D (2002) Erythrocyte mean corpuscular volume associated with severity of peripheral arterial disease: an angiographic evaluation. Ann Vasc Surg 16:474–479

    Article  PubMed  Google Scholar 

  • Holl JW, Cassady JP, Pomp D, Johnson RK (2004) A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs. J Anim Sci 82:3421–3429

    PubMed  CAS  Google Scholar 

  • Jackson IJ, Budd P, Horn JM, Johnson R, Raymond S et al (1994) Genetics and molecular biology of mouse pigmentation. Pigment Cell Res 7:73–80

    Article  PubMed  CAS  Google Scholar 

  • Johannes F, Blizard DA, Lionikas A, Lang DH, Vandenbergh DJ et al (2006) QTL influencing baseline hematocrit in the C57BL/6J and DBA/2J lineage: age-related effects. Mamm Genome 17:689–699

    Article  PubMed  Google Scholar 

  • Johansson A, Pielberg G, Andersson L, Edfors-Lilja I (2005) Polymorphism at the porcine Dominant white/KIT locus influence coat colour and peripheral blood cell measures. Anim Genet 36:288–296

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Lippi G, Manzato F, Franchini M, Guidi G (2002) Relationship between hematocrit, primary hemostasis, and cardiovascular disease in athletes. Am Heart J 144:14

    Article  Google Scholar 

  • Mueller T, Haidinger D, Luft C, Horvath W, Poelz W et al (2001) Association between erythrocyte mean corpuscular volume and peripheral arterial disease in male subjects: a case control study. Angiology 52:605–613

    Article  PubMed  CAS  Google Scholar 

  • Mueller T, Luft C, Haidinger D, Poelz W, Haltmayer M (2002) Erythrocyte mean corpuscular volume associated with the anatomical distribution in peripheral arterial disease. Vasa 31:81–85

    Article  PubMed  CAS  Google Scholar 

  • Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S et al (1998) Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood 91:288–294

    PubMed  CAS  Google Scholar 

  • Peters LL, Zhang W, Lambert AJ, Brugnara C, Churchill GA et al (2005) Quantitative trait loci for baseline white blood cell count, platelet count, and mean platelet volume. Mamm Genome 16:749–763

    Article  PubMed  Google Scholar 

  • Peters LL, Lambert AJ, Zhang W, Churchill GA, Brugnara C et al (2006) Quantitative trait loci for baseline erythroid traits. Mamm Genome 17:298–309

    Article  PubMed  CAS  Google Scholar 

  • Peterson LF, Boyapati A, Ranganathan V, Iwama A, Tenen DG et al (2005) The hematopoietic transcription factor AML1 (RUNX1) is negatively regulated by the cell cycle protein cyclin D3. Mol Cell Biol 25:10205–10219

    Article  PubMed  CAS  Google Scholar 

  • Puddu PE, Lanti M, Menotti A, Mancini M, Zanchetti A et al (2002) Red blood cell count in short-term prediction of cardiovascular disease incidence in the Gubbio population study. Acta Cardiol 57:177–185

    Article  PubMed  Google Scholar 

  • Reiner G, Fischer R, Hepp S, Berge T, Kohler F et al (2007) Quantitative trait loci for red blood cell traits in swine. Anim Genet 38:447–452

    Article  PubMed  CAS  Google Scholar 

  • Reiner G, Fischer R, Hepp S, Berge T, Kohler F et al (2008) Quantitative trait loci for white blood cell numbers in swine. Anim Genet 39:163–168

    Article  PubMed  CAS  Google Scholar 

  • Ren DR, Ren J, Xing YY, Guo YM, Wu YB et al (2008) A genome scan for quantitative trait loci affecting male reproductive traits in a White Duroc × Chinese Erhualian resource population. J Anim Sci 39 [Epub ahead of print]. Available online on July 3, 2008. doi:10.2527/jas.2008-0923

  • Russell ES (1979) Hereditary anemias of the mouse: a review for geneticists. Adv Genet 20:357–459

    Article  PubMed  CAS  Google Scholar 

  • Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339–340

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    PubMed  CAS  Google Scholar 

  • Wattrang E, Almqvist M, Johansson A, Fossum C, Wallgren P et al (2005) Confirmation of QTL on porcine chromosomes 1 and 8 influencing leukocyte numbers, haematological parameters and leukocyte function. Anim Genet 36:337–345

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by the National Natural Science Foundation of China (30425045) and the National 973 Program of China (2006CB102100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusheng Huang.

Additional information

Z. Zou and J. Ren contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2008_9142_MOESM1_ESM.doc

MOESM1 [Statistic F-values indicating QTL for erythroid trait at days 18 (a) and 46 (b) on SSC7, and at days 18 (c) and 46 (d) on SSC8. Markers and distance in cM are given on the x-axis, and F-ratios are indicated on the left y-axis. The 1% (…) and 5% (-----) genome-wide significant levels are indicated by two horizontal lines. Hct, hematocrit; Hgb, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin content; MCV, mean corpuscular volume; RBC, red blood cell count; RDW, red cell distribution width.] (DOC 87 kb)

335_2008_9142_MOESM2_ESM.doc

MOESM2 [Suggestive quantitative trait loci for baseline erythroid traits at three growth ages in the White Duroc × Erhualian intercross F2 population1] (DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Z., Ren, J., Yan, X. et al. Quantitative trait loci for porcine baseline erythroid traits at three growth ages in a White Duroc × Erhualian F2 resource population. Mamm Genome 19, 640–646 (2008). https://doi.org/10.1007/s00335-008-9142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9142-9

Keywords

Navigation