Skip to main content
Log in

Epigenetic processes in a tetraploid mammal

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Polyploidy has played a most important role in speciation and evolution of plants and animals. It is thought that low frequency of polyploidy in mammals is due to a dosage imbalance that would interfere with proper development in mammalian polyploids. The first tetraploid mammal, Tympanoctomys barrerae (Octodontidae), appears to be an exception to this rule. In this study we investigated X chromosome inactivation (XCI) and genomic imprinting in T. barrerae, two epigenetic processes usually involved in dosage control in mammalian genomes. The imprinting status of the Peg1 gene was determined by Peg1 allelic expression studies. The inactive X chromosome was identified on interphase nuclei by immunofluorescence using specific antisera raised against Met3H3K27 and macroH2A1. Quantitative PCR was used to compare the Peg1/Dmd ratio in T. barrerae and in its most closely related diploid species, Octomys mimax. Our data demonstrate that parental-specific silencing of at least one gene and normal X chromosomal dosage mechanism are conserved in the tetraploid genome. We hypothesize a concerted action of genetic and epigenetic mechanisms during the process of functional diploidization of this tetraploid genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 21:539–543

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226

    Article  PubMed  CAS  Google Scholar 

  • Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC et al (2002) Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 30:73–76

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2003) Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. Hum Mol Genet 12:2167–2178

    Article  PubMed  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  PubMed  CAS  Google Scholar 

  • Duvillie B, Bucchini D, Tang T, Jami J, Paldi A (1998) Imprinting at the mouse Ins2 locus: evidence for cis- and trans-allelic interactions. Genomics 47:52–57

    Article  PubMed  CAS  Google Scholar 

  • Eakin GS, Behringer RR (2003) Tetraploid development in the mouse. Dev Dyn 228:751–766

    Article  PubMed  Google Scholar 

  • Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N (1999) Discovery of tetraploidy in a mammal. Nature 401:341

    Article  PubMed  CAS  Google Scholar 

  • Gallardo MC, Krisch J (2001) Molecular relationships among Octodontidae (Mammalia: Rodentia: Caviomorpha). J Mamm Evol 8:73–89

    Article  Google Scholar 

  • Gallardo MH, Garrido O, Bahamonde R, Gonzalez M (2004a) Gametogenesis and nucleotypic effects in the tetraploid red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae). Biol Res 37:767–775

    Article  PubMed  Google Scholar 

  • Gallardo MH, Kausel G, Jiménez A, Bacquet C, González C et al (2004b) Biol J Linnean Soc 82:443–451

    Article  Google Scholar 

  • Gallardo MH, González C, Cebrian I (2006) Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae). Genomics 88:214–221

    Article  PubMed  CAS  Google Scholar 

  • Gallardo MH, Ojeda RA, Gonzalez CA, Rios CA (2007) The Octodontidae revisited. Univ Calif Publ Zool 134:695–719

    Google Scholar 

  • Goto T, Monk M (1998) Regulation of X-chromosome inactivation in development in mice and humans. Microbiol Mol Biol Rev 62:362–378

    PubMed  CAS  Google Scholar 

  • Guc-Scekic M, Milasin J, Stevanovic M, Stojanov L, Djordjevic M (2002) Tetraploidy in a 26-month-old girl (cytogenetic and molecular studies). Clin Genet 61:62–65

    Article  PubMed  CAS  Google Scholar 

  • Hall T (2001) Bioedit version 5.0.6. Department of Microbiology, North Carolina State University http://www.mbio.ncsu.edu/BioEdit/bioedit.html

  • Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD et al (2001) Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107:727–738

    Article  PubMed  CAS  Google Scholar 

  • Kaneko-Ishino T, Kuroiwa Y, Miyoshi N, Kohda T, Suzuki R et al (1995) Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet 11:52–59

    Article  PubMed  CAS  Google Scholar 

  • LaSalle J, Lalande M (1996) Homologous association of oppositely imprinted chromosomal domains. Science 272:725–728

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre L, Viville S, Barton SC, Ishino F, Surani MA (1997) Genomic structure and parent-of-origin-specific methylation of Peg1. Hum Mol Genet 6:1907–1915

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Wendel JF (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365–379

    Article  PubMed  CAS  Google Scholar 

  • Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N (1999) Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J Cell Biol 147:1399–1408

    Article  PubMed  CAS  Google Scholar 

  • Nishita Y, Yoshida I, Sado T, Takagi N (1996) Genomic imprinting and chromosomal localization of the human MEST gene. Genomics 36:539–542

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson R, Paldi A, Graves J (2001) Did genomic imprinting and X chromosome inactivation arise from stochastic expression? Trends Genet 17:136–142

    Article  PubMed  CAS  Google Scholar 

  • Paldi A (2003) Genomic imprinting: could the chromatin structure be the driving force? Curr Top Dev Biol 53:115–138

    Article  PubMed  CAS  Google Scholar 

  • Paldi A, Jouvenot Y (1999) Allelic trans-sensing and imprinting. Results Probl Cell Differ 25:271–282

    PubMed  CAS  Google Scholar 

  • Pardo-Manuel de Villena F, de la Casa-Esperon E, Sapienza C (2000) Natural selection and the function of genome imprinting: beyond the silenced minority. Trends Genet 16:573–579

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Kuroda M (2001) Epigenetic aspects of X-chromosome dosage compensation. Science 293:1083–1085

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36:233–278

    Article  PubMed  CAS  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    Article  PubMed  CAS  Google Scholar 

  • Pozzoli U, Elgar G, Cagliani R, Riva L, Comi GP et al (2003) Comparative analysis of vertebrate dystrophin loci indicate intron gigantism as a common feature. Genome Res 13:764–772

    Article  PubMed  CAS  Google Scholar 

  • Reule M, Krause R, Hemberger M, Fundele R (1998) Analysis of Peg1/Mest imprinting in the mouse. Dev Genes Evol 208:161–163

    Article  PubMed  CAS  Google Scholar 

  • Roberts RG, Bobrow M (1998) Dystrophins in vertebrates and invertebrates. Hum Mol Genet 7:589–595

    Article  PubMed  CAS  Google Scholar 

  • Rougeulle C, Chaumeil J, Sarma K, Allis CD, Reinberg D et al (2004) Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol 24:5475–5484

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Frisch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press

  • Shi W, Lefebvre L, Yu Y, Otto S, Krella A et al (2004) Loss-of-imprinting of Peg1 in mouse interspecies hybrids is correlated with altered growth. Genesis 39:65–72

    Article  PubMed  CAS  Google Scholar 

  • Svartman M, Stone G, Stanyon R (2005) Molecular cytogenetics discards polyploidy in mammals. Genomics 85:425–430

    Article  PubMed  CAS  Google Scholar 

  • Veitia RA (2005) Paralogs in polyploids: one for all and all for one? Plant Cell 17:4–11

    Article  PubMed  CAS  Google Scholar 

  • Vrana P, Guan X, Ingram R, Tilghman S (1998) Genomic imprinting is disrupted in interspecific Peromyscus hybrids. Nat Genet 20:362–365

    Article  PubMed  CAS  Google Scholar 

  • Vrana PB, Fossella JA, Matteson P, del Río T, O’Neill MJ et al (2000) Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nat Genet 25:120–124

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Fondo Nacional de Ciencias (Chile), grants FNC 1010727 and 1070217 to MHG, a French government PhD fellowship (CB), a travel fellowship ECOS-Conicyt grant C01B02, and Genethon. The authors thank Dr. Edith Heard for the macroH2A1 antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Paldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacquet, C., Imamura, T., Gonzalez, C.A. et al. Epigenetic processes in a tetraploid mammal. Mamm Genome 19, 439–447 (2008). https://doi.org/10.1007/s00335-008-9131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9131-z

Keywords

Navigation