Skip to main content
Log in

Gene expression variation increase in trisomy 21 tissues

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Congenital development disorders with variable severity occur in trisomy 21. However, how these phenotypic abnormalities develop with variations remains elusive. We hypothesize that the differences in euploid gene expression variation among trisomy 21 tissues are caused by the presence of an extra copy of chromosome 21 and may contribute to the phenotypic variations in Down syndrome. We used DNA microarray to measure the differences in gene expression variance between four human trisomy 21 and six euploid amniocytes. The three publicly available data sets of fetal brains, adult brains, and fetal hearts were also analyzed. The numbers of euploid genes with greater variance were significantly higher in all four kinds of trisomy 21 tissues (p < 0.01) than in the corresponding euploid tissues. Seventeen euploid genes with significantly different variance between trisomy 21 and euploid amniocytes were found using the F test. In summary, there is a set of euploid genes that shows greater variance of expression in human trisomy 21 tissues than in euploid tissues. This change may contribute to producing the variable phenotypic abnormalities observed in Down syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ait Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M et al (2007) Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am J Hum Genet 81:475–491

    Article  PubMed  CAS  Google Scholar 

  • Antonarakis SE, Epstein CJ (2006) The challenge of Down syndrome. Trends Mol Med 12:473–479

    Article  PubMed  Google Scholar 

  • Arron JR, Winslow MM, Polleri A, Chang CP, Wu H et al (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441:595–600

    Article  PubMed  CAS  Google Scholar 

  • Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY et al (2003) Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 33:422–425

    Article  PubMed  CAS  Google Scholar 

  • Chung IH, Lee SH, Lee KW, Park SH, Cha KY et al (2005) Gene expression analysis of cultured amniotic fluid cell with Down syndrome by DNA microarray. J Korean Med Sci 20:82–87

    Article  PubMed  CAS  Google Scholar 

  • Conti A, Fabbrini F, D’Agostino P, Negri R, Greco D et al (2007) Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy. BMC Genom 8:268

    Article  CAS  Google Scholar 

  • de Haan JB, Susil B, Pritchard M, Kola I (2003) An altered antioxidant balance occurs in Down syndrome fetal organs: implications for the “gene dosage effect” hypothesis. J Neural Transm Suppl 67:67–83

    Google Scholar 

  • Deutsch S, Lyle R, Dermitzakis ET, Attar H, Subrahmanyan L et al (2005) Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes. Hum Mol Genet 14:3741–3749

    Article  PubMed  CAS  Google Scholar 

  • FitzPatrick DR, Ramsay J, McGill NI, Shade M, Carothers AD et al (2002) Transcriptome analysis of human autosomal trisomy. Hum Mol Genet 11:3249–3256

    Article  PubMed  CAS  Google Scholar 

  • Fraley C (1998) Algorithms for model-based Gaussian hierarchical clustering. SIAM J Sci Comput 20:270–281

    Article  Google Scholar 

  • Fraley C, Raftery AE (1999) MCLUST: software for model-based cluster analysis. J Classification 16:297–306

    Article  Google Scholar 

  • Giannone S, Strippoli P, Vitale L, Casadei R, Canaider S et al (2004) Gene expression profile analysis in human T lymphocytes from patients with Down Syndrome. Ann Hum Genet 68:546–554

    Article  PubMed  CAS  Google Scholar 

  • Gross SJ, Ferreira JC, Morrow B, Dar P, Funke B et al (2002) Gene expression profile of trisomy 21 placentas: a potential approach for designing noninvasive techniques of prenatal diagnosis. Am J Obstet Gynecol 187:457–462

    Article  PubMed  Google Scholar 

  • Gulesserian T, Seidl R, Hardmeier R, Cairns N, Lubec G (2001) Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J Investig Med 49:41–46

    Article  PubMed  CAS  Google Scholar 

  • Li CM, Guo M, Salas M, Schupf N, Silverman W et al (2006) Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC Med Genet 7:24

    Article  PubMed  CAS  Google Scholar 

  • Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ et al (2007) Gene expression profiling in the adult Down syndrome brain. Genomics 90:647–660

    Article  PubMed  CAS  Google Scholar 

  • Mao R, Zielke CL, Zielke HR, Pevsner J (2003) Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics 81:457–467

    Article  PubMed  CAS  Google Scholar 

  • Mao R, Wang X, Spitznagel EL Jr, Frelin LP, Ting JC et al (2005) Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart. Genome Biol 6:R107

    Article  PubMed  CAS  Google Scholar 

  • Mehta PD, Capone G, Jewell A, Freedland RL (2007) Increased amyloid beta protein levels in children and adolescents with Down syndrome. J Neurol Sci 254:22–27

    Article  PubMed  CAS  Google Scholar 

  • Olson LE, Richtsmeier JT, Leszl J, Reeves RH (2004) A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 306:687–690

    Article  PubMed  CAS  Google Scholar 

  • Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307:1965–1969

    Article  PubMed  CAS  Google Scholar 

  • Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX et al (2006) Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem 97(Suppl 1):104–109

    Google Scholar 

  • Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge Vivier C et al (2007) Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am J Hum Genet 81:252–263

    Article  PubMed  CAS  Google Scholar 

  • Roper RJ, Reeves RH (2006) Understanding the basis for Down syndrome phenotypes. PLoS Genet 2:e50

    Article  PubMed  CAS  Google Scholar 

  • Saran NG, Pletcher MT, Natale JE, Cheng Y, Reeves RH (2003) Global disruption of the cerebellar transcriptome in a Down syndrome mouse model. Hum Mol Genet 12:2013–2019

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Reid LH, Jones WD, Shippy R, Warrington JA et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  PubMed  CAS  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rate. J Royal Statistical Soc B 64:479–498

    Article  Google Scholar 

  • Sultan M, Piccini I, Balzereit D, Herwig R, Saran NG et al (2007) Gene expression variation in ‘Down syndrome’ mice allows to prioritize candidate genes. Genome Biol 8:R91

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Schapiro MB, Franz DN, Patterson BJ, Hickey FJ et al (2004) Blood expression profiles for tuberous sclerosis complex 2, neurofibromatosis type 1, and Down’s syndrome. Ann Neurol 56:808–814

    Article  PubMed  CAS  Google Scholar 

  • von Kaisenberg CS, Brand-Saberi B, Christ B, Vallian S, Farzaneh F et al (1998) Collagen type VI gene expression in the skin of trisomy 21 fetuses. Obstet Gynecol 91:319–323

    Article  Google Scholar 

  • Whitehead A, Crawford DL (2006) Variation within and among species in gene expression: raw material for evolution. Mol Ecol 15:1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Wolvetang EJ, Bradfield OM, Hatzistavrou T, Crack PJ, Busciglio J et al (2003) Overexpression of the chromosome 21 transcription factor Ets2 induces neuronal apoptosis. Neurobiol Dis 14:349–356

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Chen Chih-Ping and Dr. Tsang-Ming Ko for providing trisomy 21 amniocytes. This work was supported by National Science Council (NSC) grant No. 95-2314-B-002-255-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fon Jou Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, C.Y., Liu, L.Y., Chen, C.Y. et al. Gene expression variation increase in trisomy 21 tissues. Mamm Genome 19, 398–405 (2008). https://doi.org/10.1007/s00335-008-9121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9121-1

Keywords

Navigation