Skip to main content
Log in

A phenotype-driven ENU mutagenesis screen for the identification of dominant mutations involved in alcohol consumption

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The aim of this study was the application of a phenotype-driven N-ethyl-N-nitrosourea (ENU) mutagenesis screen in mice for the identification of dominant mutations involved in the regulation and modulation of alcohol-drinking behavior. The chemical mutagen ENU was utilized in the generation of 131 male ENU-mutant C57BL/6J mice (G0). These ENU-treated mice were paired with wild-type C57BL/6J mice to generate G1 and subsequent generations. In total, 3327 mice were generated. Starting with G1, mice were screened for voluntary oral self-administration of 10% (v/v) alcohol vs. water in a two-bottle paradigm. From these mice, after a total period of 5 weeks of drinking, 43 mutants fulfilled the criteria of an “alcohol phenotype,” that is, high or low ethanol intake. They were then selected for breeding and tested in a “confirmation cross” (G2–G4) for inheritance. Although we did not establish stable high or low drinking lines, several results were obtained in the context of alcohol consumption. First, female mice drank more alcohol than their male counterparts. Second, the former demonstrated greater infertility. Third, all animals displayed relatively stable alcohol intake, although significantly different in two different laboratories. Finally, seasonal and monthly variability was observed, with the highest alcohol consumption occurring in spring and the lowest in autumn. In conclusion, it seems difficult to identify dominant mutations involved in the modulation or regulation of voluntary alcohol consumption via a phenotype-driven ENU mutagenesis screen. In accordance with the findings from knockout studies, we suggest that mainly recessive mutations contribute to an alcohol-drinking or alcohol-avoiding phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aksoy A, Schulz D, Yilmaz A, Canbeyli R (2004) Seasonal variability in behavioral despair in female rats. Int J Neurosci 12:1513–1520

    Article  Google Scholar 

  • Barbaric I, Wells S, Russ A, Dear TN (2007) Spectrum of ENU-induced mutations in phenotype-driven and gene-driven screens in the mouse. Environ Mol Mutagen 48:124–142

    Article  PubMed  CAS  Google Scholar 

  • Chester JA, de Paula Barrenha G, DeMaria A, Finegan A (2006) Different effects of stress on alcohol drinking behaviour in male and female mice selectively bred for high alcohol preference. Alcohol Alcohol 41:44–53

    PubMed  Google Scholar 

  • Crabbe JN, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC, Phillips TJ, Harris RA, Arends MA, Koob GF (2006) Alcohol-related genes: contributions from studies with genetically engineered mice. Addict Biol 11:195–269

    Article  PubMed  CAS  Google Scholar 

  • Del Rio MC, Prada C, Alvarez FJ (2002) Drinking habits throughout the seasons of the year in the Spanish population. J Stud Alcohol 63:577–580

    PubMed  Google Scholar 

  • Hrabé de Angelis M, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D, et al. (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 25:444–447

    Article  PubMed  Google Scholar 

  • Justice MJ, Carpenter DA, Favor J, Neuhauser-Klaus A, Hrabé de Angelis M, et al. (2000) Effects of ENU dosage on mouse strains. Mamm Genome 11:484–488

    Article  PubMed  CAS  Google Scholar 

  • Lemmens PH, Knibbe RA (1993) Seasonal variation in survey and sales estimates of alcohol consumption. J Stud Alcohol 54:157–163

    PubMed  CAS  Google Scholar 

  • Melo JA, Shendure J, Pociask K, Silver LM (1996) Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nat Genet 13:147–153

    Article  PubMed  CAS  Google Scholar 

  • Meyer L, Caston J, Mensah-Nyagan AG (2006) Seasonal variation of the impact of a stressful procedure on open field behaviour and blood corticosterone in laboratory mice. Behav Brain Res 167:342–348

    Article  PubMed  CAS  Google Scholar 

  • Middaugh LD, Kelley BM, Bandy ALE, McGroarty KK (1999) Ethanol consumption by C57BL/6 mice: influence of gender and procedural variables. Alcohol 17:175–183

    Article  PubMed  CAS  Google Scholar 

  • Middaugh LD, Szumlinski KK, Van Patten Y, Marlowe ALB, Kalivas PW (2003) Chronic ethanol consumption by C57BL/6 mice promotes tolerance to its interoceptive cues and increases extracellular dopamine, an effect blocked by naltrexone. Alcohol Clin Exp Res 27:1892–1900

    Article  PubMed  CAS  Google Scholar 

  • Naz RK, Rajesh C (2005) Gene knockouts that cause female infertility: search for novel contraceptive targets. Front Biosci 10:2447–2459

    Article  PubMed  CAS  Google Scholar 

  • Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, et al. (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443

    Article  PubMed  CAS  Google Scholar 

  • Pawlak CR, Schwarting RK (2002) Object preference and nicotine consumption in rats with high vs. low rearing activity in a novel open field. Pharmacol Biochem Behav 73:679–687

    Article  PubMed  CAS  Google Scholar 

  • Rossant J (2003) Genetics: a balancing act. Nature 425:29–32

    Article  PubMed  CAS  Google Scholar 

  • Sanchis-Segura C, Spanagel R (2006) Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 11:2–38

    Article  PubMed  Google Scholar 

  • Soewarto D, Blanquet V, Hrabé de Angelis M (2003) Random ENU mutagenesis. Methods Mol Biol 209:249–266

    PubMed  CAS  Google Scholar 

  • Spanagel R, Sigmund S, Cowen M, Schroff KC, Schumann G, et al. (2002) The neuronal nitric oxide synthase (nNOS) gene is critically involved in neurobehavioral effects of alcohol. J Neurosci 22:8676–8683

    PubMed  CAS  Google Scholar 

  • Uitenbroek DG (1996) Seasonal variation in alcohol use. J Stud Alcohol 57:47–52

    PubMed  CAS  Google Scholar 

  • Wahlsten D, Metten P, Phillips TJ, Boehm SL II, Burkhart-Kasch S, et al. (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54:283–311

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mark Lathrop for initiating this project, and Martina Herforth, Sabrina Koch, Stefanie Frank, and Peter Siegel for excellent technical assistance. This work was supported by BMBF grants FKZ 01GS0475 and 01 EB 0410 and the Centre National de Génotypage, Evry, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius R. Pawlak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlak, C.R., Sanchis-Segura, C., Soewarto, D. et al. A phenotype-driven ENU mutagenesis screen for the identification of dominant mutations involved in alcohol consumption. Mamm Genome 19, 77–84 (2008). https://doi.org/10.1007/s00335-007-9087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9087-4

Keywords

Navigation