Skip to main content
Log in

Investigation of the role of the agouti signaling protein gene (ASIP) in coat color evolution in primates

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We investigated variation in the gene encoding the agouti signaling protein (ASIP) in relation to coat color evolution in primates. We found little evidence that mutations in the coding region of ASIP have been involved in color changes among closely related primate species. Among many closely related species with differing coat color, the coding region of ASIP was identical. In two cases (Sulawesi macaque and black lion tamarin) where species with almost completely black coat color had derived point mutations in exon 4 of the ASIP coding sequence, the same mutations did not alter coloration in other mammals and so probably do not affect ASIP function. Evolutionary reconstructions of two key phenotypes that are typically related to ASIP function—transverse phaeomelanin bands on hairs and pale ventral coloration—showed that these usually evolved concurrently, suggesting that loci acting downstream of ASIP may be involved. Analysis of dN/dS ratios revealed a likely change in functional constraint on ASIP following loss of agouti-banded hairs + pale ventral coloration, particularly in catarrhine primates (humans, apes, and Old World monkeys). Together with previous results on a lack of association of coat color with MC1R variation, these results suggest that other loci probably have an important role in primate coat color evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bennett DC, Lamoreux ML (2003) The color loci of mice—a genetic century. Pigment Cell Res 16, 333–344

    Article  PubMed  CAS  Google Scholar 

  • Berryere T, Kerns J, Barsh G, Schmutz S (2005) Association of an Agouti allele with fawn or sable coat color in domestic dogs. Mamm Genome 16, 262–272

    Article  PubMed  CAS  Google Scholar 

  • Bonilla C, Boxill L-A, McDonald SA, Williams T, Sylvester N, et al. (2005) The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans. Hum Genet 116, 402–406

    Article  PubMed  CAS  Google Scholar 

  • Bultman SJ, Michaud EJ, Woychik RP (1992) Molecular characterization of the mouse agouti locus. Cell 71, 1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Duhl DMJ, Barsh GS (1996) Opposite orientations of an inverted duplication and allelic variation at the mouse agouti locus. Genetics 144, 265–277

    PubMed  CAS  Google Scholar 

  • Drögemüller C, Giese A, Martins-Wess F, Wiedemann S, Andersson L, et al. (2006) The mutation causing the black-and-tan pigmentation phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence. Mamm Genome 17, 58–66

    Article  PubMed  CAS  Google Scholar 

  • Eizirik E, Yuhki N, Johnson W, Menotti-Raymond M, Hannah S, et al. (2003) Molecular genetics and evolution of melanism in the cat family. Curr Biol 13, 448–453

    Article  PubMed  CAS  Google Scholar 

  • Girardot M, Martin J, Guibert S, Leveziel H, Julien R, et al. (2005) Widespread expression of the bovine Agouti gene results from at least three alternative promoters. Pigment Cell Res 18, 34–41

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313, 101–104

    Article  PubMed  CAS  Google Scholar 

  • Jackson IJ (1997) Homologous pigmentation mutations in human, mouse and other model organisms. Hum Mol Genet 6, 1613–1624

    Article  PubMed  CAS  Google Scholar 

  • Kanetsky PA, Swoyer J, Panossian S, Homes R, Guerry D, et al. (2002) A polymorphism in the agouti signaling protein gene is associated with human pigmentation. Am J Hum Genet 70, 770–775

    Article  PubMed  CAS  Google Scholar 

  • Kerns J, Olivier M, Lust G, Barsh G (2004) Characterization of the dog Agouti gene and identification of a nonagouti mutation in German Shepherd Dogs. Mamm Genome 15, 798–808

    Article  PubMed  CAS  Google Scholar 

  • Kiefer LL, Ittoop ORR, Bunce K, Truesdale AT, Willard DH, et al. (1997) Mutations in the carboxyl terminus of the agouti protein decrease agouti inhibition of ligand binding to the melanocortin receptors. Biochemistry 36, 2084–2090

    Article  PubMed  CAS  Google Scholar 

  • Kiefer LL, Veal JM, Mountjoy KG, Wilkison WO (1998) Melanocortin receptor binding determinants in the agouti protein. Biochemistry 37, 991–997

    Article  PubMed  CAS  Google Scholar 

  • Krude H, Biebermann H, Luck W, Horn R, Brabant G, et al. (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19, 155–157

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto T, Nomoto T, Sugimura T, Ushijima T (2001) Cloning of the rat agouti gene and identification of the rat nonagouti mutation. Mamm Genome 12, 469–471

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Bultman S, Löffler C, Chen W-J, Furdon P, et al. (1994) Molecular structure and chromosomal mapping of the human homolog of the agouti gene. Proc Natl Acad Sci USA 91, 9760–9764

    Article  PubMed  CAS  Google Scholar 

  • McNulty JC, Jackson PJ, Thompson DA, Chai B, Gantz I, et al. (2005) Structures of the Agouti signaling protein. J Mol Biol 346, 1059–1070

    Article  PubMed  CAS  Google Scholar 

  • Mundy NI, Kelly J (2001) Phylogeny of lion tamarins (Leontopithecus) based on interphotoreceptor binding protein intron 1 sequences. Am J Primatol 54, 33–40

    Article  PubMed  CAS  Google Scholar 

  • Mundy NI, Kelly J (2003) Evolution of a pigmentation gene, the melanocortin-1 receptor, in primates. Am J Phys Anthropol 121, 67–80

    Article  PubMed  CAS  Google Scholar 

  • Nachman MW, Hoekstra HE, D’Agostino SL (2003) The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci USA 100, 5268–5273

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Ishida T (2006) Alu-mediated 100-kb deletion in the primate genome: the loss of the agouti signaling protein gene in the lesser apes. Genome Res 16, 485–490

    Article  PubMed  CAS  Google Scholar 

  • Perry WL, Nakamura T, Swing DA, Secrest L, Eagleson B, et al. (1996) Coupled site-directed mutagenesis/transgenesis identifies important functional domains of the mouse agouti protein. Genetics 144, 255–264

    PubMed  CAS  Google Scholar 

  • Rieder S, Taourit S, Mariat D, Langlois B, Guérin G (2001) Mutations in the agouti (ASIP), the extension (MC1R) and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm Genome 12, 450–455

    Article  PubMed  CAS  Google Scholar 

  • Ritland K, Newton C, Marshall HD (2001) Inheritance and population structure of the white-phased “Kermode” black bear. Curr Biol 11, 1468–1472

    Article  PubMed  CAS  Google Scholar 

  • Römpler H, Rohland N, Lalueza-Fox C, Willerslev E, Kuznetsova T, et al. (2006) Nuclear gene indicates coat-color polymorphism in mammoths. Science 313, 62

    Article  PubMed  Google Scholar 

  • Siracusa LD (1994) The agouti gene: turned on to yellow. Trends Genet 10, 423–428

    Article  PubMed  CAS  Google Scholar 

  • Tota MR, Smith TS, Mao C, MacNeil T, Mosley RT, et al. (1999) Molecular interaction of agouti protein and agouti-related protein with human melanocortin receptors. Biochemistry 38, 897–904

    Article  PubMed  CAS  Google Scholar 

  • Våge DI, Lu D, Klungland H, Lien S, Adalsteinsson S, et al. (1997) A non-epistatic interaction of agouti and extension in the fox, Vulpes vulpes. Nat Genet 15, 311–315

    Article  PubMed  Google Scholar 

  • Voisey J, Gomez-Cabrera MdC, Smit DJ, Leonard JH, Sturm RA, et al. (2006) A polymorphism in the agouti signaling protein (ASIP) is associated with decreased levels of mRNA. Pigment Cell Res 19, 226–231

    Article  PubMed  CAS  Google Scholar 

  • Vrieling H, Duhl D, Millar S, Miller K, Barsh G (1994) Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proc Natl Acad Sci USA 91, 5667–5671

    Article  PubMed  CAS  Google Scholar 

  • Wilson BD, Ollmann MM, Kang L, Stoffel M, Bell GI, et al. (1995) Structure and function of ASP, the human homolog of the mouse agouti gene. Hum Mol Genet 4, 223–230

    PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15, 496–503

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Andrew Kitchener, Jim Dietz, Alcides Pissinatti, Nancy Caine, Anna Feistner, Mike Bruford, Oliver Ryder, the National Museums of Scotland, the Jersey Wildlife Preservation Trust, the Institute of Zoology, and the Center for Reproduction of Endangered Species for providing samples. Brenda Bradley and two anonymous reviewers provided helpful comments on the manuscript. This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas I. Mundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mundy, N.I., Kelly, J. Investigation of the role of the agouti signaling protein gene (ASIP) in coat color evolution in primates. Mamm Genome 17, 1205–1213 (2006). https://doi.org/10.1007/s00335-006-0056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-006-0056-0

Keywords

Navigation