Skip to main content

Advertisement

Log in

Analysis of expansion of myeloid progenitors in mice to identify leukemic susceptibility genes

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The myeloid progenitor cell compartment (MPC) exhibits pronounced expansion in human myeloid leukemias. It is becoming more apparent that progression of myelodysplastic syndromes and myeloproliferative diseases to acute myelogenous leukemia is the result of defects in progenitor cell maturation. The MPC of bone marrow was analyzed in mice using a cell culture assay for measuring the relative frequency of proliferative myeloid progenitors. Response to the cytokines SCF, IL-3, and GM-CSF was determined by this assay for the leukemic mouse strain BXH-2 and ten other inbred mouse strains. Significant differences were found to exist among ten inbred mouse strains in the nature of their MPC in bone marrow, indicating the presence of genetic polymorphisms responsible for the divergence. The SWR/J and FVB/J strains show consistently low frequencies of myeloid progenitors, while the DBA/2J and SJL/J inbred strains show consistently high frequencies of myeloid progenitors within the bone marrow compartment. In addition, in silico linkage disequilibrium analysis was conducted to identify possible chromosomal regions responsible for the phenotypic variation. Given the importance of this cell compartment in leukemia progression and the soon to be released genomic sequence of 15 mouse strains, these differences may provide a valuable tool for research into leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Bedigian HG, Taylor BA, Meier H (1981) Expression of murine leukemia viruses in the highly lymphomatous BXH-2 recombinant inbred mouse strain. J Virol 39: 632–640

    PubMed  CAS  Google Scholar 

  • Bedigian HG, Johnson DA, Jenkins NA, Copeland NG, Evans R (1984) Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice. J Virol 51: 586–594

    PubMed  CAS  Google Scholar 

  • Briddell RA, Hartley CA, Smith KA, McNiece IK (1993) Recombinant rat stem cell factor synergizes with recombinant human granulocyte colony-stimulating factor in vivo in mice to mobilize peripheral blood progenitor cells that have enhanced repopulating potential. Blood 82: 1720–1723

    PubMed  CAS  Google Scholar 

  • Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, et al. (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11: 630–637

    Article  PubMed  CAS  Google Scholar 

  • Champion K M, Gilbert JG, Asimakopoulos FA, Hinshelwood S, Green AR (1997) Clonal haemopoiesis in normal elderly women: implications for the myeloproliferative disorders and myelodysplastic syndromes. Br J Haematol 97: 920–926

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Harrison DE (2002) Quantitative trait loci regulating relative lymphocyte proportions in mouse peripheral blood. Blood 99: 561–566

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Astle CM, Harrison DE (1999) Development and aging of primitive hematopoietic stem cells in BALB/cBy mice. Exp Hematol 27: 928–935

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Astle CM, Harrison DE (2000) Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol 28: 442–450

    Article  PubMed  CAS  Google Scholar 

  • Christensen K, Kristiansen M, Hagen-Larsen H, Skytthe A, Bathum L, et al. (2000) X-linked genetic factors regulate hematopoietic stem-cell kinetics in females. Blood 95: 2449–2451

    PubMed  CAS  Google Scholar 

  • Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (1994) Current Protocols in Immunology In: Current Protocols, Coico R (ed.) (New York: John Wiley & Sons), pp 5.3.1–5.3.7

    Google Scholar 

  • Crump WL 3rd, Owen-Schaub LB, Grimm EA (1989) Synergy of human recombinant interleukin 1 with interleukin 2 in the generation of lymphokine-activated killer cells. Cancer Res 49: 149–153

    PubMed  CAS  Google Scholar 

  • de Haan G, Van Zant G (1997) Intrinsic and extrinsic control of hemopoietic stem cell numbers: mapping of a stem cell gene. J Exp Med 186: 529–536

    Article  PubMed  Google Scholar 

  • de Haan G, Van Zant G (1999a) Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93: 3294–3301

    Google Scholar 

  • de Haan G, Van Zant G (1999b) Genetic analysis of hemopoietic cell cycling in mice suggests its involvement in organismal life span. FASEB J 13: 707–713

    Google Scholar 

  • de Haan G, Nijhof W, Van Zant G (1997) Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89: 1543–1550

    PubMed  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7: 21–33

    Article  PubMed  CAS  Google Scholar 

  • Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, et al. (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8: 303–333

    Article  PubMed  CAS  Google Scholar 

  • Grupe A, Germer S, Usuka J, Aud D, Belknap JK, et al. (2001) In silico mapping of complex disease-related traits in mice. Science 292: 1915–1918

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Ichihara M, Takagi M, Miyajima A (1995) Interleukin-3 (IL-3) poor-responsive inbred mouse strains carry the identical deletion of a branch point in the IL-3 receptor alpha subunit gene. Blood 85: 2331–2336

    PubMed  CAS  Google Scholar 

  • Henckaerts E, Geiger H, Langer JC, Rebollo P, Van Zant G, et al. (2002) Genetically determined variation in the number of phenotypically defined hematopoietic progenitor and stem cells and in their response to early-acting cytokines. Blood 99: 3947–3954

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann MK, Gilbert KM, Hirst JA, Scheid M (1987) An essential role for interleukin 1 and a dual function for interleukin 2 in the immune response of murine B lymphocytes to sheep erythrocytes. J Mol Cell Immunol 3: 29–36

    PubMed  CAS  Google Scholar 

  • Hommel G, Krummenauer F (1998) Improvements and modifications of Tarone’s multiple test procedure for discrete data. Biometrics 54: 673–681

    Article  Google Scholar 

  • Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, et al. (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351: 657–667

    Article  PubMed  CAS  Google Scholar 

  • Jandl JH (1996) Blood cell formation. In: Blood: Textbook of Hematology (Boston: Little, Brown), pp 1–55

  • Jenkins NA, Copeland NG, Taylor BA, Bedigian HG, Lee BK (1982) Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissues of BXH-2 recombinant inbred mice. J Virol 42: 379–388

    PubMed  CAS  Google Scholar 

  • Kile BT, Mason-Garrison CL, Justice MJ (2003) Sex and strain-related differences in the peripheral blood cell values of inbred mouse strains. Mamm Genome 14: 81–85

    Article  PubMed  Google Scholar 

  • Li J, Shen H, Himmel KL, Dupuy AJ, Largaespada DA, et al. (1999) Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet 23: 348–353

    Article  PubMed  CAS  Google Scholar 

  • Male D (1998) Cell Migration and Inflamation. In: Immunology, Roitt I, Brostoff J, Male D (eds.) (St. Louis: C.V. Mosby) pp 61–69

  • Metcalf D, Mifsud S, Di Rago L (2002) Stem cell factor can stimulate the formation of eosinophils by two types of murine eosinophil progenitor cells. Stem Cells 20: 460–469

    Article  PubMed  CAS  Google Scholar 

  • Molineux G, Migdalska A, Szmitkowski M, Zsebo K, Dexter TM (1991) The effects on hematopoiesis of recombinant stem cell factor (ligand for c-kit) administered in vivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood 78: 961–966

    PubMed  CAS  Google Scholar 

  • Mucenski ML, Bedigian HG, Shull MM, Copeland NG, Jenkins NA (1988) Comparative molecular genetic analysis of lymphomas from six inbred mouse strains. J Virol 62: 839–846

    PubMed  CAS  Google Scholar 

  • Muller-Sieburg CE, Riblet R (1996) Genetic control of the frequency of hematopoietic stem cells in mice: mapping of a candidate locus to chromosome 1. J Exp Med 183: 1141–1150

    Article  PubMed  CAS  Google Scholar 

  • Muller-Sieburg CE, Cho RH, Sieburg HB, Kupriyanov S, Riblet R (2000) Genetic control of hematopoietic stem cell frequency in mice is mostly cell autonomous. Blood 95: 2446–2448

    PubMed  CAS  Google Scholar 

  • Okamoto K, Yamada Y, Ogawa MS, Toyokuni S, Nakakuki Y, et al. (1994) Abnormal bone marrow B-cell differentiation in pre-B lymphoma-prone SL/Kh mice. Cancer Res 54: 399–402

    PubMed  CAS  Google Scholar 

  • Peters LL, Cheever EM, Ellis HR, Magnani PA, Svenson KL, et al. (2002) Large-scale, high-throughput screening for coagulation and hematologic phenotypes in mice. Physiol Genomics 11: 185–193

    PubMed  CAS  Google Scholar 

  • Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, et al. (2004) Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2: e393

    Article  PubMed  Google Scholar 

  • Roberts AW, Foote S, Alexander WS, Scott C, Robb L, et al. (1997) Genetic influences determining progenitor cell mobilization and leukocytosis induced by granulocyte colony-stimulating factor. Blood 89: 2736–2744

    PubMed  CAS  Google Scholar 

  • Rook G (1996) Cell-mediated immune reactions. In: Immunology, Riott I, Brostoff J, Male D (eds.) (St. Louis: C.V. Mosby), pp 9.1–9.15

    Google Scholar 

  • Smith JD, James D, Dansky HM, Wittkowski KM, Moore KJ, et al. (2003) In silico quantitative trait locus map for atherosclerosis susceptibility in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23: 117–122

    Article  PubMed  CAS  Google Scholar 

  • Terskikh AV, Miyamoto T, Chang C, Diatchenko L, Weissman IL (2003) Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood 102: 94–101

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Gauthier S, Mitsos LM, Shustik C, Copeland NG, et al. (2004) Genetic control of myeloproliferation in BXH-2 mice. Blood 103: 2343–2350

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Gauthier S, Tuite A, Mullick A, Malo D, et al. (2005) A mutation in the Icsbp1 gene causes susceptibility to infection and a chronic myeloid leukemia-like syndrome in BXH-2 mice. J Exp Med 201: 881–890

    Article  PubMed  CAS  Google Scholar 

  • Van Zant G, Eldridge PW, Behringer RR, Dewey MJ (1983) Genetic control of hematopoietic kinetics revealed by analyses of allophenic mice and stem cell suicide. Cell 35: 639–645

    Article  PubMed  Google Scholar 

  • Vickers MA, McLeod E, Spector TD, Wilson IJ (2001) Assessment of mechanism of acquired skewed X inactivation by analysis of twins. Blood 97: 1274–1281

    Article  PubMed  CAS  Google Scholar 

  • Yasuhiro A, Sugimoto K, Sato AK, Mori KJ (2002) Identification of negative regulator of interleukin-3 (NIL-3) in bone marrow. Cell Struct Funct 27: 81–89

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jonathan D. Smith from the Lerner Research Institute for his generous donation of a formatted SNP database. They acknowledge Dr. Linda Siracusa and Dr. Walter Hauck for critical review of this manuscript. This work was supported in part by grants from the NCI. VES was supported in part by NIH training grant T32-CA09678. Some supplies were supplied by a March of Dimes research grant (658).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent E. Sollars.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sollars, V.E., Pequignot, E., Rothstein, J.L. et al. Analysis of expansion of myeloid progenitors in mice to identify leukemic susceptibility genes. Mamm Genome 17, 808–821 (2006). https://doi.org/10.1007/s00335-006-0017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-006-0017-7

Keywords

Navigation