Skip to main content
Log in

Construction of a cytogenetically anchored microsatellite map in rabbit

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Rabbit (Oryctolagus cuniculus) represents a valuable source of biomedical models and corresponds to a small but active economic sector in Europe for meat and fur. The rabbit genome has not been thoroughly studied until recently, and high-resolution maps necessary for identification of genes and quantitative trait loci (QTL) are not yet available. Our aim was to isolate over 300 new and regularly distributed (TG)n or (TC)n rabbit microsatellites. To achieve this purpose, 164 microsatellite sequences were isolated from gene-containing bacterial artificial chromosome (BAC) clones previously localized by fluorescence in situ hybridization (FISH) on all the rabbit chromosomes. In addition, 141 microsatellite sequences were subcloned from a plasmid genomic library, and for 41 of these sequences, BAC clones were identified and FISH-mapped. TC repeats were present in 62% of the microsatellites derived from gene-containing BAC clones and in 22% of those from the plasmid genomic library, with an average of 42.9% irrespective of the microsatellite origin. These results suggest a higher proportion of (TC)n repeats and a nonhomogeneous distribution of (TG)n and (TC)n repeats in the rabbit genome compared to those in man. Among the 305 isolated microsatellites, 177 were assigned to 139 different cytogenetic positions on all the chromosomes except rabbit Chromosome 21. Sequence similarity searches provided hit locations on the Human Build 35a and hypothetical assignments on rabbit chromosomes for ten additional microsatellites. Taken together, these results report a reservoir of 305 new rabbit microsatellites of which 60% have a cytogenetic position. This is the first step toward the construction of an integrated cytogenetic and genetic map based on microsatellites homogeneously anchored to the rabbit genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215, 403–410

    Article  PubMed  Google Scholar 

  • Bösze Z, Hiripi L, Carnwath JW, Niemann H (2003) The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Res 12(5), 541–553

    Article  PubMed  Google Scholar 

  • Campo MS (2002) Animal models of papillomaviras pathogenesis Virus Res 89(2), 249–261

    Article  PubMed  Google Scholar 

  • Chantry–Darmon C, Rogel–Gaillard C, Bertaud M, Urien C, Perrocheau M, et al. (2003) 133 new gene localizations on the rabbit cytogenetic map. Cytogenet Genome Res 103, 192–201

    Article  PubMed  Google Scholar 

  • Chantry–Darmon C, Bertaud M, Urien C, Chadi-Taourit S, Perrocheau M, et al. (2005) Expanded comparative mapping between man and rabbit and detection of a new conserved segment between HSA22 and OCU4. Cytogenet Genome Res (in press)

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5(6): 435–445

    Article  PubMed  Google Scholar 

  • Ellegren H, Johansson M, Sandberg K, Andersson L (1992) Cloning of highly polymorphic microsatellites in the horse. Anim Genet 23(2), 133–142

    PubMed  Google Scholar 

  • Estoup A, Solignac M, Harry M, Cornuet JM (1993) Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Res 21(6), 1427–1431

    PubMed  Google Scholar 

  • Fan J, Watanabe T (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol Ther 99(3), 261–282

    Article  Google Scholar 

  • Georges M, Massey JM (1992) Polymorphic DNA markers in Bovidae. Patent WO 92/13102

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982), 493–521

    Article  PubMed  Google Scholar 

  • Hayes H, Rogel–Gaillard C, Zijlstra C, De Haan NA, Urien C, et al. (2002) Establishment of an R-banded rabbit karyotype nomenclature by FISH localization of 23 chromosome-specific genes on both G- and R-banded chromosomes. Cytogenet Genome Res 98(2–3), 199–205

    Article  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921

    Google Scholar 

  • Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, et al. (2003) The dog genome: survey sequencing and comparative analysis. Science 301(5641), 1898–1903

    Article  PubMed  Google Scholar 

  • Korstanje R, O’Brien PC, Yang F, Rens W, Bosma AA, et al. (1999) Complete homology maps of the rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenet Cell Genet 86(3–4), 317–322

    Article  PubMed  Google Scholar 

  • Korstanje R, Gillissen GF, Kodde LP, den Bieman MG, Lankhorst A, et al. (2001a) Mapping of microsatellite loci and association of aorta atherosclerosis with LG VI markers in the rabbit. Physiol Genomics 6, 11–18

    Google Scholar 

  • Korstanje R, Gillissen GF, den Bieman MG, Versteeg SA, van Oost B, et al. (2001b) Mapping of rabbit chromosome 1 markers generated from a microsatellite-enriched chromosome-specific library. Animal Genet 32(5), 308–312

    Article  Google Scholar 

  • Korstanje R, Gillissen GF, Versteeg SA, van Oost BA, Bosma AA, et al. (2003) Mapping of rabbit microsatellite markers using chromosome-specific libraries. J Hered 94(2), 161–169

    Article  PubMed  Google Scholar 

  • Krane DE, Clark AG, Cheng J-F, Hardison RC (1991) Subfamily relationships and clustering of rabbit C repeats. Mol Biol Evol 8(1), 1–30

    PubMed  Google Scholar 

  • Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21(5), 1111–1115

    PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921

    Article  PubMed  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44(3), 397–401

    PubMed  Google Scholar 

  • Miesfeld R, Krystal M, Arnheim N (1981) A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human delta and beta globin genes. Nucleic Acids Res 9(22), 5931–5947

    PubMed  Google Scholar 

  • Morris J, Kushner SR, Ivarie R (1986) The simple repeat poly(dT-dG).poly(dC-dA) common to eukaryotes is absent from eubacteria and archaebacteria and rare in protozoans. Mol Biol Evol 3(4), 343–355

    PubMed  Google Scholar 

  • Mougel F, Mounolou JC, Monnerot M (1997) Nine polymorphic microsatellite loci in the rabbit, Oryctolagus cuniculus. Anim Genet 28(1), 58–59

    Article  PubMed  Google Scholar 

  • Ohno S, Yomo T (1991) The grammatical rule for all DNA: junk and coding sequences. Electrophoresis 12(2–3), 103–108

    Article  Google Scholar 

  • Queney G, Ferrand N, Marchandeau S, Azevedo M, Mougel F, et al. (2000) Absence of a genetic bottleneck in a wild rabbit (Oryctolagus cuniculus) population exposed to a severe viral epizootic. Mol Ecol 9(9), 1253–1264

    Article  PubMed  Google Scholar 

  • Queney G, Ferrand N, Weiss S, Mougel F, Monnerot M (2001) Stationary distributions of microsatellite loci between divergent population groups of the European rabbit (Oryctolagus cuniculus). Mol Biol Evol 18(12), 2169–2178

    PubMed  Google Scholar 

  • Rico C, Rico I, Webb N, Smith S, Bell D, et al. (1994) Four polymorphic microsatellite loci for the European wild rabbit, Oryctolagus cuniculus. Anim Genet 25(5), 367

    PubMed  Google Scholar 

  • Rogel–Gaillard C, Piumi F, Billault A, Bourgeaux N, Save JC, et al. (2001) Construction of a rabbit bacterial artificial chromosome (BAC) library: application to the mapping of the major histocompatibility complex to position 12q1.1. Mamm Genome 12, 253–255

    Article  PubMed  Google Scholar 

  • Rohrer GA, Alexander LJ, Beattie CW (1997) Mapping genes located on human chromosomes 2 and 12 to porcine chromosomes 15 and 5. Anim Genet 28(6), 448–450

    Article  PubMed  Google Scholar 

  • Ros F, Fuels J, Reichenberger N, van Schooten W, Buelow R, et al. (2004) Sequence analysis of 0.5 Mb of the rabbit germline immunoglobulin heavy chain locus. Gene 330, 49–59

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology, (Totowa, NJ: Humana Press), pp 365–386

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press)

    Google Scholar 

  • Schibler L, Vaiman D, Oustry A, Giraud–Delville C, Cribiu EP (1998) Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res 8(9), 901–915

    PubMed  Google Scholar 

  • Spritz RA, (1981) Duplication/deletion polymorphism 5′- to the human beta globin gene. Nucleic Acids Res 9(19), 5037–5047

    PubMed  Google Scholar 

  • Steffen P, Eggen A, Dietz AB, Womack JE, Stranzinger G, et al. (1993) Isolation and mapping of polymorphic microsatellites in cattle. Anim Genet 24(2), 121–124

    PubMed  Google Scholar 

  • Surridge AK, Bell DJ, Rico C, Hewitt GM (1997) Polymorphic microsatellite loci in the European rabbit (Oryctolagus cuniculus) are also amplified in other Lagomorph species. Anim Genet 28(4), 302–305

    Article  PubMed  Google Scholar 

  • Surridge AK, Ibrahim KM, Bell DJ, Webb NJ, Rico C, et al. (1999) Fine-scale genetic structuring in a natural population of European wild rabbits (Oryctolagus cuniculus). Mol Ecol 8(2), 299–307

    Article  PubMed  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17(16), 6463–6471

    PubMed  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7), 967–981

    Article  PubMed  Google Scholar 

  • Vaiman D, Mercier D, Moazami–Goudarzi K, Eggen A, Ciampolini R, et al. (1994) A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm Genome 5(5), 288–297

    Article  PubMed  Google Scholar 

  • van Haeringen WA, den Bieman M, van Zutphen LF, van Lith HA (1996–97) Polymorphic microsatellite DNA markers in the rabbit (Oryctolagus cuniculus). J Exp Anim Sci 38(2), 49–57

    PubMed  Google Scholar 

  • van Haeringen WA, Den Bieman M, Gillissen GF, Lankhorst AE, Kuiper MT, et al. (2001) Mapping of a QTL for serum HDL cholesterol in the rabbit using AFLP technology. J Hered 92(4), 322–326

    Article  PubMed  Google Scholar 

  • van Haeringen WA, Den Bieman MG, Lankhorst AE, van Lith HA, van Zutphen LF (2002) Application of AFLP markers for QTL mapping in the rabbit. Genome 45(5), 914–921

    Article  PubMed  Google Scholar 

  • van Lith HA, van Zutphen LF (1996) Characterization of rabbit DNA microsatellites extracted from the EMBL nucleotide sequence database. Anim Genet 27(6), 387–395

    PubMed  Google Scholar 

  • van Zutphen LF, Fox RR (1977) Strain differences in response to dietary cholesterol by JAX rabbits: correlation with esterase patterns. Atherosclerosis 28(4), 435–446

    PubMed  Google Scholar 

  • Vicente JS, Viudes de Castro MP, Lavara R, Moce E (2004) Study of fertilising capacity of spermatozoa after heterospermic insemination in rabbit using DNA markers. Theriogenology 61(7–8), 1357–1365

    Article  PubMed  Google Scholar 

  • Waterston RH, Lindblad–Toh K, Birney E, Rogers J, Abril JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915): 520–562

    Article  PubMed  Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms, which can be typed using the polymerase chain reaction. Am J Hum Genet 44(3): 388–396

    PubMed  Google Scholar 

  • Wintero AK, Fredholm M, Thomsen PD (1992) Variable (dG-dT)n.(dC-dA)n sequences in the porcine genome. Genomics 12(2): 281–288

    Article  PubMed  Google Scholar 

  • Zijlstra C, de Haan NA, Korstanje R, Rogel–Gaillard C, Piumi F, et al. (2002) Fourteen chromosomal localizations and an update of the cytogenetic map of the rabbit. Cytogenet Genome Res 97(3–4): 191–199

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Céline Chantry-Darmon was funded by the Animal Genetics Department of INRA and the Syndicat des Sélectionneurs de Lapins Français (SYSELAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Rogel–Gaillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chantry-Darmon, C., Urien, C., Hayes, H. et al. Construction of a cytogenetically anchored microsatellite map in rabbit. Mamm Genome 16, 442–459 (2005). https://doi.org/10.1007/s00335-005-2471-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-2471-z

Keywords

Navigation