Skip to main content
Log in

Angiogenesis and capillary maturation phenotypes associated with the Edpm3 locus on rat chromosome 3

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The quantitative trait locus (QTL) Edpm3 is one of a group of additively acting QTL \responsible for the difference in estrogen-induced pituitary tumor growth between the tumor-susceptible F344 and tumor-resistant BN rat strains. The F344.BN-Edpm3BN rat strain was produced by moving the segment of rat Chr 3 between D3Mgh7 and D3Mgh13, which contains the Edpm3 QTL, from the BN strain into the F344 genetic background. In a previous study, we used this congenic line to find that the BN allele of the Edpm3 QTL reduces tissue mass and S-phase fraction in the estrogen-induced rat pituitary tumor. We now report on the use of this congenic line to investigate the linkage of Edpm3 to tumor angiogenesis. Contrary to expectation, the F344.BN-Edpm3BN strain has significantly greater angiogenic activity than does F344 in both treated and untreated rats. Microvessel count (MVC), perivascular space, and number of nonattached pericytes/pericapillary fibroblasts are all elevated in the pituitary by chronic estrogen treatment and their values are significantly greater in F344.BN-Edpm3BN than F344. Thus, although there is greater angiogenic activity in the pituitary of estrogen-treated F344.BN-Edpm3BN rats, there is a deficiency in capillary maturation compared with F344.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alani RM, Silverthorn CF, Orosz K (2004) Tumor anigogenesis in mice and men. Cancer Biol Ther. 3: 498–500

    PubMed  Google Scholar 

  • Albrecht E, Pope G (2003) Steroid hormone regulation of angiogenesis in the primate endometrium. Front Biosci 8: D416–D429

    CAS  PubMed  Google Scholar 

  • Ali S, O’Donnel A, Balu D, Pohl M, Seyler M, et al. (2000) Estrogen receptor-alpha in the inhibition of camcer growth and angiogenesis. Cancer Res 60: 7094–7098

    CAS  PubMed  Google Scholar 

  • Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14: 53–65

    Article  CAS  PubMed  Google Scholar 

  • Burger PC, Klintworth GK (1981) Autoradiographic study of corneal neovascularization indueced by chemical cautery. Lab Invest 45: 328–335

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain R (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257

    Article  CAS  PubMed  Google Scholar 

  • Culling C, Allison R, Barr W (1985) Connective tissue. In: Culling C, Allison R, Barr W (eds). Cellular pathology techniques. (London: Butterworth), pp 173–174

    Google Scholar 

  • De Nicola AF, van Lawzewitsch I, Kaplan SE, Libertun C (1978) Biochemical and ultrastructural studies on estrogen-induced pituitary tumors in F344 rats. J Natl Cancer Inst 61: 753–763

    PubMed  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Varela H, Rancel N, Valladares F (1991) Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopathol 6: 269–286

    CAS  PubMed  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Varela H (1994) Angiogenesis: an update. Histol Histopathol 9: 807–843

    CAS  PubMed  Google Scholar 

  • Dvorak H (2000) VPF/VEGF and the angiogenic response. Semin Perinatol 24: 75–78

    CAS  PubMed  Google Scholar 

  • Dvorak H, Nagy J, Dvorak J, Dvorak A (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133: 673–686

    Google Scholar 

  • Dvorak H, Nagy J, Dvorak A (1991) Structure of solid tumors and their vasculature: implications of therapy with monoclonal antibodies. Cancer Cells 3: 77–85

    CAS  PubMed  Google Scholar 

  • Elias KA, Weiner RI (1984) Direct arterial vascularization of estrogen-induced prolactin-secreting anterior pituitary tumors. Proc Natl Acad Sci U S A 81: 4549–4553

    CAS  PubMed  Google Scholar 

  • Finch PW, Rubin JS, Miki T, Ron D, Aaronson SA (1989) Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245: 752–755

    CAS  PubMed  Google Scholar 

  • Foster JS, Henley DC, Ahamed S, Wimalasena J (2001) Estrogens and cell-cycle regulation in breast cancer. Trends Endocrinol Metab 12: 320–327

    CAS  PubMed  Google Scholar 

  • Fujimoto J, Hirose R, Sakaguchi H, Tamaya T (1998) Estrogen dependency in uterine endometrial cancers. Oncology 55: 53–59

    Article  CAS  PubMed  Google Scholar 

  • Hara E, Yamaguchi T, Nojima H, Ide T, Campisi J, et al. (1994) Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J Biol Chem 269: 2139–2145

    CAS  PubMed  Google Scholar 

  • Haran EF, Maretzek AF, Goldberg I, Horowitx A, Degani H (1994) Tamoxifen inhibits cell death in implanted MCF7 breast cancer by inhibiting endothelium growth. Cancer Res 54: 5511–5514

    CAS  PubMed  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, et al. (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156: 1363–1380

    CAS  PubMed  Google Scholar 

  • Holtzman S, Stone JP, Shellabarger CJ (1979) Influence of diethylstilbestrol treatment on prolactin cells in female ACI and Sprague–Dawley rats. Cancer Res 39: 779–784

    CAS  PubMed  Google Scholar 

  • Hulka BS, Liu ET, Lininger RA (1994) Steroid hormones and risk of breast cancer. Cancer 74: 1111–1124

    CAS  PubMed  Google Scholar 

  • Hyder SM, Stancel GM (1999) Regulation of angiogenic growth factors in the female reproductive tract by estrogens and progestins. Mol Endocrinol 13: 806–811

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata T, Naito Z, Lu YP, Kawahara K, Fujii T, et al. (2002) Differential distribution of fibroblast growth factor (FGF)-7 and FGF-10 in L-arginine-induced acute pancreatitis. Exp Mol Pathol 73: 181–190

    Article  CAS  PubMed  Google Scholar 

  • Langer SZ, Hicks PE (1984) Alpha-adrenoreceptor subtypes in blood vessels: physiology and pharmacology. J Cardiovasc Pharmacol 6(Suppl 4): S547–S558

    PubMed  Google Scholar 

  • Less JR, Posner MC, Skalak TC, Wolmark N, Jain RK (1997) Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation 4: 25–33

    CAS  PubMed  Google Scholar 

  • Lloyd RV (1983) Estrogen-induced hyperplasia and neoplasia in the rat anterior pituitary gland: an immunohistochemical study. Am J Pathol 113: 198–206

    CAS  PubMed  Google Scholar 

  • Lyden D, Young A, Zagzag D, Yan W, Gerald W, et al. (1999) Id1 and Id3 are required for neurogenesis, angigenesis and vascularisation of xenografts. Nature 401: 670–677

    Article  CAS  PubMed  Google Scholar 

  • Mirra SS, Miles ML (1982) Unusual pericyte proliferation in a meningotheliomatous meningioma: An ultrastructural study. Am J Surg Pathol 6: 573–580

    CAS  PubMed  Google Scholar 

  • Morikawa S, Baluk P, Kaidoh T, Haskell M, Jain R, et al. (2002) Abnormalities in pericyte on blood vessels and endothelial sprouts in tumors. Am J Pathol 160: 985–1000

    PubMed  Google Scholar 

  • Muss HB (1992) Endocrine therapy for advanced breast cancer: a review. Breast Cancer Res Treat 21: 15–26

    Article  CAS  PubMed  Google Scholar 

  • Nehls V, Denzer K, Drenckhahn D (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270: 469–474

    Article  CAS  PubMed  Google Scholar 

  • Paku S, Paweletz N (1991) First steps of tumor-related angiogenesis. Lab Invest 65: 334–346

    CAS  PubMed  Google Scholar 

  • Pandey J, Cracchiolo D, Hansen FM, Wendell DL (2002) Strain differences and inheritance of angiogenic versus angiostatic activity in oestrogen-induced rat pituitary tumours. Angiogenesis 5: 53–66

    Article  CAS  PubMed  Google Scholar 

  • Pandey J, Bannout A, Wendell DL (2004) The Edpm5 locus prevents the “angiogenic switch” in estrogen-induced rat pituitary tumors. Carcinogenesis 25: 1829–1838

    Article  CAS  PubMed  Google Scholar 

  • Perrot–Applanat M, Ancelin M, Buteau-Lozano H, Meduri G, Bausero P (2000) Ovarian steroids in endometrial angiogenesis. Steroids 65: 599–603

    CAS  PubMed  Google Scholar 

  • Phelps C, Hymer WC (1983) Characterization of estrogen-induced adenohypophyseal tumors in the Fischer 344 rat. Neuroendocrinology 37: 23–31

    CAS  PubMed  Google Scholar 

  • Saharinen P, Alitalo K (2003) Double target for tumor mass destruction. J Clin Invest 111: 1277–1280

    Article  CAS  PubMed  Google Scholar 

  • Schechter J, Ahmad N, Elias KA, Weiner R (1987) Estrogen-induced tumors: changes in the vasculature in two strains of rat. Am J Anat 179: 315–323

    Article  CAS  PubMed  Google Scholar 

  • Shull JD, Birt DF, McComb RD, Spady TJ, Pennington KL, et al. (1998) Estrogen induction of prolactin-producing pituitary tumors in the Fischer 344 rat: modulation by dietary-energy but not protein consumption. Mol Carcinog 23: 96–105

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Itahana Y, Parrinello S, Murata K, Desprez PY (2001) Molecular cloning and characterization of a zinc finger protein involved in Id-1 stimulated mammary epithelial cell growth. J Biol Chem 276: 11852–11858

    CAS  PubMed  Google Scholar 

  • Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, et al. (1996) Quantification of angiogenesis in solid human tumors: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 32A: 2474–2484

    CAS  PubMed  Google Scholar 

  • Weidner N, Folkman J, Pozza F (1992) Tumor angiogenesis: A new significant and independent prognostic indicator in early stage breast carcinoma. J Natl Cancer Inst 84: 1875–1887

    CAS  PubMed  Google Scholar 

  • Wendell DL, Gorski J (1997) Quantitative trait loci for estrogen-dependent pituitary tumor growth in the rat. Mamm Genome 8: 823–829

    Article  CAS  PubMed  Google Scholar 

  • Wendell DL, Herman A, Gorski J (1996) Genetic separation of tumor growth and hemorrhagic phenotypes in an estrogen-induced tumor. Proc Natl Acad Sci U S A 93: 8112–8116

    Article  CAS  PubMed  Google Scholar 

  • Wendell DL, Daun SB, Stratton MB, Gorski J (2000) Different functions of QTL for estrogen-dependent tumor growth of the rat pituitary. Mamm Genome 11: 855–861

    Article  CAS  PubMed  Google Scholar 

  • Wendell DL, Pandey J, Kelley P (2002) A congenic strain of rat for investigation of control of estrogen-induced growth. Mamm Genome 13: 664–666

    Article  PubMed  Google Scholar 

  • Wiklund J, Wertz N, Gorski J (1981) A comparison of estrogen effects on uterine and pituitary growth and prolactin synthesis in F344 and Holtzman rats. Endocrinology 109: 1700–1707

    CAS  PubMed  Google Scholar 

  • Winzer-Serhan UH, Leslie FM (1997) Alpha2B adrenoceptor mRNA expression during rat brain development. Brain Res Dev Brain Res 100: 90–100

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Oakland University Research Excellence Fund and by NIH grant R15-DK064675. The authors thank Anas Bannout for technical assistance, Fay Hansen for advice and valuable discussion, and Todd Miller for thin sectioning and preparation of grids for EM. Anti-rat prolactin antibodies were provided by Dr A.F. Parlow of the NIDDK National Hormone and Pituitary Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Wendell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, J., Wendell, D.L. Angiogenesis and capillary maturation phenotypes associated with the Edpm3 locus on rat chromosome 3. Mamm Genome 17, 49–57 (2006). https://doi.org/10.1007/s00335-005-2450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-2450-4

Keywords

Navigation