Skip to main content

Advertisement

Log in

Analysis of the MCMV resistome by ENU mutagenesis

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The mouse cytomegalovirus (MCMV) resistome is the set of host genes with nonredundant functions in resistance to MCMV infection. By screening 3500 G3 germline mutant mice (∼1750 gamete equivalents), we have identified eight transmissible mutations that create MCMV susceptibility in C57BL/6 mice. Among these, a mutation called Domino was noted to cause macrophage susceptibility to vesicular stomatitis virus (VSV) in vitro. This accessory phenotype was not corrected by type I interferon (IFN), which suggested a defect of the type I IFN pathway. Domino corresponds to a point mutation that alters the DNA binding domain of STAT1, leading to a defect of STAT1 activation. Identification of the Domino mutation demonstrates that an in vivo MCMV susceptibility screen is feasible and illustrates how it can provide insight into the resistome. Moreover, some mutations are far more deleterious than Domino in MCMV-infected mice, consistent with the interpretation that certain protein(s) unrelated to IFN production or signaling are more important than IFNs with regard to their net antiviral effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli-Esposti MA (2003) Functional interactions between dendritic cells and NK cells during viral infection. Nat Immunol 4: 175–181

    Article  CAS  PubMed  Google Scholar 

  • Andrews DM, Andoniou CE, Scalzo AA, van Dommelen SL, Wallace ME, et al. (2005) Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol 42: 547–555

    Article  CAS  PubMed  Google Scholar 

  • Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296: 1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Balling R (2001) ENU mutagenesis: analyzing gene function in mice. Annu Rev Genomics Hum Genet 2: 463–492

    Article  CAS  PubMed  Google Scholar 

  • Belardelli F, Vignaux F, Proietti E, Gresser I (1984) Injection of mice with antibody to interferon renders peritoneal macrophages permissive for vesicular stomatitis virus and encephalomyocarditis virus. Proc Natl Acad Sci USA 81: 602–606

    CAS  PubMed  Google Scholar 

  • Belardelli F, Gessani S, Proietti E, Locardi C, Borghi P, et al. (1987) Studies on the expression of spontaneous and induced interferons in mouse peritoneal macrophages by means of monoclonal antibodies to mouse interferons. J Gen Virol 68 (Pt 8): 2203–2212

    Article  CAS  PubMed  Google Scholar 

  • Beutler B, Crozat K, Koziol JA, Georgel P (2005) Genetic dissection of innate immunity to infection: the mouse cytomegalovirus model. Curr Opin Immunol 17: 36–43

    Article  CAS  PubMed  Google Scholar 

  • Concepcion D, Seburn KL, Wen G, Frankel WN, Hamilton BA (2004) Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 168: 953–959

    Article  CAS  PubMed  Google Scholar 

  • Du X, Tabeta K, Hoebe K, Liu H, Mann N, et al. (2004) Velvet, a dominant Egfr mutation that causes wavy hair and defective eyelid development in mice. Genetics 166: 331–340

    Article  CAS  PubMed  Google Scholar 

  • Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, et al. (2003) Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 33: 388–391

    Article  CAS  PubMed  Google Scholar 

  • Durbin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84: 443–450

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Matsumoto M, Sato M, Kashiwazaki Y, Kimura T, et al. (1996) Regulation of IFN-alpha/beta genes: evidence for a dual function of the transcription factor complex ISGF3 in the production and action of IFN-alpha/beta. Genes Cells 1: 995–1005

    Article  CAS  PubMed  Google Scholar 

  • Kile BT, Hentges KE, Clark AT, Nakamura H, Salinger AP, et al. (2003) Functional genetic analysis of mouse chromosome 11. Nature 425: 81–86

    Article  CAS  PubMed  Google Scholar 

  • Kovarik P, Mangold M, Ramsauer K, Heidari H, Steinborn R, et al. (2001) Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J 20: 91–100

    Article  CAS  PubMed  Google Scholar 

  • Krug A, French AR, Barchet W, Fischer JA, Dzionek A, et al. (2004) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21: 107–119

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Girard S, Macina D, Busa M, Zafer A, et al. (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28: 42–45

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Zafer A, de Repentigny Y, Kothary R, Tremblay ML, et al. (2003) Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J Exp Med 197: 515–526

    Article  CAS  PubMed  Google Scholar 

  • Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3: 651–662

    Article  CAS  PubMed  Google Scholar 

  • Loh J, Chu DT, O’Guin AK, Yokoyama WM, Virgin HWt (2005) Natural killer cells utilize both perforin and gamma interferon to regulate murine cytomegalovirus infection in the spleen and liver. J Virol 79: 661–667

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, et al. (2005) Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell 17: 761–771

    Article  CAS  PubMed  Google Scholar 

  • Marie I, Durbin JE, Levy DE (1998) Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 17: 6660–6669

    Article  CAS  PubMed  Google Scholar 

  • McBride KM, Banninger G, McDonald C, Reich NC (2002) Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J 21: 1754–1763

    Article  CAS  PubMed  Google Scholar 

  • Melen K, Kinnunen L, Julkunen I (2001) Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J Biol Chem 276: 16447–16455

    Article  CAS  PubMed  Google Scholar 

  • Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, et al. (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84: 431–442

    Article  CAS  PubMed  Google Scholar 

  • Meyer T, Hendry L, Begitt A, John S, Vinkemeier U (2004) A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of stat transcription factors. J Biol Chem 279: 18998–19007

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KB, Salazar-Mather TP, Dalod MY, Van Deusen JB, Wei XQ, et al. (2002) Coordinated and distinct roles for IFN22 alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J Immunol 169, 4279–4287

    CAS  PubMed  Google Scholar 

  • Orange JS, Wang B, Terhorst C, Biron CA (1995) Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182: 1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Presti RM, Pollock JL, Dal Canto AJ, O’Guin AK, Virgin HW 4th (1998) Interferon gamma regulates acute and latent murine cytomegalovirus infection and chronic disease of the great vessels. J Exp Med 188: 577–588

    Article  CAS  PubMed  Google Scholar 

  • Proietti E, Gessani S, Belardelli F, Gresser I (1986) Mouse peritoneal cells confer an antiviral state on mouse cell monolayers: role of interferon. J Virol 57: 456–463

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Sabastian P, Clark P, Brown MG (2004) Cmv1-independent antiviral role of NK cells revealed in murine cytomegalovirus-infected New Zealand White mice. J Immunol 173: 6312–6318

    CAS  PubMed  Google Scholar 

  • Russell LB, Montgomery CS (1982) Supermutagenicity of ethylnitrosourea in the mouse spot test: comparisons with methylnitrosourea and ethylnitrosourethane. Mutat Res 92: 193–204

    CAS  PubMed  Google Scholar 

  • Russell WL, Kelly EM, Hunsicker PR, Bangham JW, Maddux SC, et al. (1979) Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc Natl Acad Sci USA 76: 5818–5819

    CAS  PubMed  Google Scholar 

  • Ruzek MC, Miller AH, Opal SM, Pearce BD, Biron CA (1997) Characterization of early cytokine responses and an interleukin (IL)-6-dependent pathway of endogenous glucocorticoid induction during murine cytomegalovirus infection. J Exp Med 185: 1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Hata N, Asagiri M, Nakaya T, Taniguchi T, et al. (1998) Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 441: 106–110

    Article  CAS  PubMed  Google Scholar 

  • Sjolin H, Tomasello E, Mousavi-Jazi M, Bartolazzi A, Karre K, et al. (2002) Pivotal role of KARAP/DAP12 adaptor molecule in the natural killer cell-mediated resistance to murine cytomegalovirus infection. J Exp Med 195: 825–834

    Article  CAS  PubMed  Google Scholar 

  • Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, et al. (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 99: 8826–8831

    CAS  PubMed  Google Scholar 

  • Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, et al. (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101: 3516–3521

    Article  CAS  PubMed  Google Scholar 

  • Varinou L, Ramsauer K, Karaghiosoff M, Kolbe T, Pfeffer K, et al. (2003) Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-gamma-dependent innate immunity. Immunity 19: 793–802

    Article  CAS  PubMed  Google Scholar 

  • Webb JR, Lee SH, Vidal SM (2002) Genetic control of innate immune responses against cytomegalovirus: MCMV meets its match. Genes Immun 3: 250–262

    Article  CAS  PubMed  Google Scholar 

  • Yang E, Henriksen MA, Schaefer O, Zakharova N, Darnell JE Jr (2002) Dissociation time from DNA determines transcriptional function in a STAT1 linker mutant. J Biol Chem 277: 13455–13462

    Article  CAS  PubMed  Google Scholar 

  • Zhong M, Henriksen MA, Takeuchi K, Schaefer O, Liu B, et al. (2005) Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc Natl Acad Sci USA 102: 3966–3971

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Carl Ware, Professor of the La Jolla Institute for Allergy and Immunology (La Jolla, CA), for providing the MCMV virus and for helpful discussions. This work was supported by NIH grant No. AI054523. This is TSRI manuscript No. 17947-IMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Beutler.

Additional information

The Mouse Genome Informatics (MGI) accession ID of the Domino allele described in this article is MGI: 3619019.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crozat, K., Georgel, P., Rutschmann, S. et al. Analysis of the MCMV resistome by ENU mutagenesis. Mamm Genome 17, 398–406 (2006). https://doi.org/10.1007/s00335-005-0164-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0164-2

Keywords

Navigation