Skip to main content
Log in

A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Whole-genome genetic association studies in outbred mouse populations represent a novel approach to identifying the molecular basis of naturally occurring genetic variants, the major source of quantitative variation between inbred strains of mice. Measuring multiple phenotypes in parallel on each mouse would make the approach cost effective, but protocols for phenotyping on a large enough scale have not been developed. In this article we describe the development and deployment of a protocol to collect measures on three models of human disease (anxiety, type II diabetes, and asthma) as well as measures of mouse blood biochemistry, immunology, and hematology. We report that the protocol delivers highly significant differences among the eight inbred strains (A/J, AKR/J, BALBc/J, CBA/J, C3H/HeJ, C57BL/6 J, DBA/2 J, and LP/J), the progenitors of a genetically heterogeneous stock (HS) of mice. We report the successful collection of multiple phenotypes from 2000 outbred HS animals. The phenotypes measured in the protocol form the basis of a large-scale investigation into the genetic basis of complex traits in mice designed to examine interactions between genes and between genes and environment, as well as the main effects of genetic variants on phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ammassari-Teule M, Passino E, Restivo L, de Marsanich B (2000) Fear conditioning in C57/BL/6 and DBA/2 mice: variability in nucleus accumbens function according to the strain predisposition to show contextual- or cue-based responding. Eur J Neurosci 12: 4467–4474

    CAS  PubMed  Google Scholar 

  • Brown SD, Hardisty RE (2003) Mutagenesis strategies for identifying novel loci associated with disease phenotypes. Semin Cell Dev Biol 14: 19–24

    CAS  PubMed  Google Scholar 

  • Clark LD, Clark RK, Heber–Katz E (1998) A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol 88: 35–45

    Article  CAS  PubMed  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284: 1670–1672

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, et al. (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132: 107–124

    CAS  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6: 13–34

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Falls WA, Campeau S, Kim M (1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58: 175–198

    Article  CAS  PubMed  Google Scholar 

  • Deacon RM, Rawlins JN (2005) Hippocampal lesions, species-typical behaviours and anxiety in mice. Behav Brain Res 156: 241–249

    Article  PubMed  Google Scholar 

  • Demarest K, Koyner J, McCaughran J Jr, Cipp L, Hitzemann R (2001) Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity. Behav Genet 31: 79–91

    Article  CAS  PubMed  Google Scholar 

  • Eum SY, Haile S, Lefort J, Huerre M, Vargaftig BB (1995) Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness. Proc Natl Acad Sci U S A 92: 12290–12294

    CAS  PubMed  Google Scholar 

  • Ewart SL, Kuperman D, Schadt E, Tankersley C, Grupe A, et al. (2000) Quantitative trait loci controlling allergen-induced airway hyperresponsiveness in inbred mice. Am J Respir Cell Mol Biol 23: 537–545

    CAS  PubMed  Google Scholar 

  • Falls WA, Carlson S, Turner JG, Willott JF (1997) Fear-potentiated startle in two strains of inbred mice. Behav Neurosci 111: 855–861

    CAS  PubMed  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6: 271–286

    Article  CAS  PubMed  Google Scholar 

  • Goren HJ, Kulkarni RN, Kahn CR (2004) Glucose homeostasis and tissue transcript content of insulin signaling intermediates in four inbred strains of mice: C57BL/6, C57BLKS/6, DBA/2, and 129X1. Endocrinology 145: 3307–3323

    Article  CAS  PubMed  Google Scholar 

  • Green EC, Gkoutos GV, Lad HV, Blake A, Weekes J, et al. (2005) EMPReSS: European mouse phenotyping resource for standardized screens. Bioinformatics 21: 2930–2931

    Article  CAS  PubMed  Google Scholar 

  • Greenspan RJ (2004) E pluribus unum, ex uno plura: quantitative and single-gene perspectives on the study of behavior. Annu Rev Neurosci 27: 79–105

    Article  CAS  PubMed  Google Scholar 

  • Grillon C, Ameli R, Woods SW, Merikangas K, Davis M (1991) Fear-potentiated startle in humans: effects of anticipatory anxiety on the acoustic blink reflex. Psychophysiology 28: 588–595

    CAS  PubMed  Google Scholar 

  • Grubb SC, Churchill GA, Bogue MA (2004) A collaborative database of inbred mouse strain characteristics. Bioinformatics 20: 2857–2859

    Article  CAS  PubMed  Google Scholar 

  • Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, et al. (1997) Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 156: 766–775

    CAS  PubMed  Google Scholar 

  • Heldt S, Sundin V, Willott JF, Falls WA (2000) Posttraining lesions of the amygdala interfere with fear-potentiated startle to both visual and auditory conditioned stimuli in C57BL/6 J mice. Behav Neurosci 114: 749–759

    Article  CAS  PubMed  Google Scholar 

  • Hough TA, Nolan PM, Tsipouri V, Toye AA, Gray IC, et al. (2002) Novel phenotypes identified by plasma biochemical screening in the mouse. Mamm Genome 13: 595–602

    Article  CAS  PubMed  Google Scholar 

  • Konno S, Adachi M, Matsuura T, Sunouchi K, Hoshino H, et al. (1993) [Bronchial reactivity to methacholine and serotonin in six inbred mouse strains.] Arerugi 42: 42–47

    CAS  PubMed  Google Scholar 

  • Levitt RC, Mitzner W (1988) Expression of airway hyperreactivity to acetylcholine as a simple autosomal recessive trait in mice. FASEB J 2: 2605–2608

    CAS  PubMed  Google Scholar 

  • Longphre M, Kleeberger SR (1995) Susceptibility to platelet-activating factor-induced airway hyperreactivity and hyperpermeability: interstrain variation and genetic control. Am J Respir Cell Mol Biol 13: 586–594

    CAS  PubMed  Google Scholar 

  • McCaughran JA Jr, Bell J 3rd, Hitzemann RJ (2000) Fear-potentiated startle response in mice: genetic analysis of the C57BL/6 J and DBA/2 J intercross. Pharmacol Biochem Behav 65: 301–312

    Article  CAS  PubMed  Google Scholar 

  • Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97: 12649–12654

    Article  PubMed  Google Scholar 

  • Paylor R, Tracy R, Wehner J, Rudy JW (1994) Dba/2 and C57bl/6 mice differ in contextual fear but not auditory fear conditioning. Behav Neurosci 108: 810–817

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2004) A language and environment for statistical computing (Vienna: R Foundation for Statistical Computing)

    Google Scholar 

  • Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, et al. (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8: 711–713

    Article  CAS  PubMed  Google Scholar 

  • Rossmeisl M, Rim JS, Koza RA, Kozak LP (2003) Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes 52: 1958–1966

    CAS  PubMed  Google Scholar 

  • Stoll M, Cowley AW Jr, Tonellato PJ, Greene AS, Kaldunski ML, et al. (2001) A genomic-systems biology map for cardiovascular function. Science 294: 1723–1726

    Article  CAS  PubMed  Google Scholar 

  • Talbot CJ, Nicod A, Cherny SS, Fulker DW, Collins AC, et al. (1999) High-resolution mapping of quantitative trait loci in outbred mice. Nat Genet 21: 305–308

    CAS  PubMed  Google Scholar 

  • The Eumorphia Consortium (2005) EMPReSS: standardized phenotypic screens for functional annotation of the mouse genome. Nat Genet 37: 1–2

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Flint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solberg, L.C., Valdar, W., Gauguier, D. et al. A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mamm Genome 17, 129–146 (2006). https://doi.org/10.1007/s00335-005-0112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0112-1

Keywords

Navigation