Skip to main content

Advertisement

Log in

18,000 years of grassland evolution in the summer rainfall region of South Africa: evidence from Mahwaqa Mountain, KwaZulu-Natal

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

A palynological and sedimentological record from the Mahwaqa Mountain in KwaZulu-Natal, South Africa, provides evidence of the vegetation dynamics in this part of the Grassland Biome during the last c. 18,000 years. The wetland is located at 1,850 m on an isolated outlier of the Ukhahlamba–Drakensberg Mountain range on an ecotone along a climatic gradient. The vegetation responded to humidity and temperature changes during the late Pleistocene and Holocene. The period c. 18,000–13,500 cal. bp is characterized by high Ericaceae and Restionaceae percentages and decreasing values of charred particles, indicating cool conditions. Around 13,500–8,500 cal. bp, Ericaceae were gradually replaced by Poaceae, signaling climate warming. Growing environmental wetness during the same time period is inferred from Phragmites-type and Cliffortia pollen percentages. Since c. 8,500 cal. bp, Cliffortia, Restionaceae, and Phragmites-type percentages have maintained low levels. Ericaceae were almost completely replaced by grasses and Asteraceae by c. 7,500 cal. bp. All indications are that warm and fluctuating moisture conditions followed until 4,600 cal. bp but they became driest between c. 4,600 and 3,500 cal. bp, when high Asteraceae, Pentzia-type and Scabiosa percentages were prominent. From c. 3,500–800 cal. bp, the increase of sedges, Aponogeton and grass pollen (including Phragmites-type) at the expense of Asteraceae pollen suggests the return of slightly more humid conditions. Since c. 1,000 cal. bp an increase of water demanding Podocarpus and Cliffortia occurred. Pine pollen indicates the recent introduction of alien plants in the 19th and 20th centuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alm E (2010) Mahwaqa—the frowning mountain. Plant Life 39(40):38–44

    Google Scholar 

  • Bard E, Rostek F, Sonzogni C (1997) Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385:707–710

    Article  Google Scholar 

  • Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Article  Google Scholar 

  • Boelhouwers JC, Sumner P (2003) The palaeoenvironmental significance of southern African blockfields and blockstreams. In: Phillips M, Springman SM, Arenson LU (eds) Permafrost. Swets and Zeitlinger, Lisse, pp 73–78

    Google Scholar 

  • Boelhouwers JC, Holness S, Meiklejohn I, Sumner P (2002) Observations on a blockstream in the vicinity of Sani Pass, Lesotho Highlands, southern Africa. Permafr Periglac 13:251–257

    Article  Google Scholar 

  • Bond WJ, Midgley GF, Woodward FI (2003) What controls South African vegetation-climate or fire? S Afr J Bot 69:79–91

    Google Scholar 

  • Bonnefille R, Riollet G (1980) Pollens des Savanes ďAfrique Orientale. Editions du Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Botha GA (1996) The geology and palaeopedology of late Quaternary colluvial sediments in northern KwaZulu-Natal, South Africa. Memoir of the Geological Survey of South Africa number 83. Council for Geoscience, Pretoria

  • Botha GA, Scott L, Vogel JC, von Brunn V (1992) Palaeosols and palaeoenvironments during the ‘Late Pleistocene Hypothermal’ in northern Natal. S Afr J Sci 88:508–512

    Google Scholar 

  • Brand RF, Du Preez PJ, Brown LR (2008) A floristic description of the Afromontane fynbos communities on Platberg, Eastern Free State, South Africa. KOEDOE 50:202–213

    Article  Google Scholar 

  • Bussmann RW (2006) Vegetation zonation and nomenclature of African mountains—an overview. Lyonia 11:41–66

    Google Scholar 

  • Carbutt C, Edwards TJ (2001) Cape elements on high-altitude corridors and edaphic islands: historical aspects and preliminary phytogeography. Syst Geogr Plants 71:1,033–1,061

    Article  Google Scholar 

  • Carbutt C, Edwards TJ (2004) The flora of the Drakensberg Alpine Centre. Edinb J Bot 60:581–607

    Google Scholar 

  • Carbutt C, Edwards TJ (2006) The endemic and near-endemic angiosperms of the Drakensberg Alpine Centre. S Afr J Bot 72:105–132

    Article  Google Scholar 

  • Carbutt C, Tau M, Stephens A, Bescott B (2011) The conservation status of temperate grasslands in southern Africa. GRASSROOTS 11:17–23

    Google Scholar 

  • Carriόn JS, Navarro C (2002) Cryptogam spores and other non-pollen microfossils as sources of palaeoecological information: case-studies from Spain. Ann Bot Fenn 39:1–14

    Google Scholar 

  • Carriόn JS, Scott L, Huffman T, Dreyer C (2000) Pollen analysis of Iron Age cow dung in southern Africa. Veget Hist Archaeobot 9:239–249

    Article  Google Scholar 

  • Clark JS (1988) Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quat Res 30:67–80

    Article  Google Scholar 

  • Clarke ML, Vogel JC, Botha GA, Wintle AG (2003) Late Quaternary hillslope evolution recorded in eastern South African colluvial badlands. Palaeogeogr Palaeoclimatol Palaeoecol 197:199–212

    Article  Google Scholar 

  • Conedera M, Tinner W, Neff C, Meurer M, Dickens A, Krebs P (2009) Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev 28:435–456

    Article  Google Scholar 

  • Cowling RM, Richardson DM, Pierce SM (2003) Vegetation of Southern Africa. Cambridge University Press, Cambridge

    Google Scholar 

  • Daniau A-L, Sánchez Goni MF, Martinez P, Urrego DH, Bout-Roumazeilles V, Desprat S, Marlon RM (2013) Orbital-scale climate forcing of grassland burning in southern Africa. Proc Natl Acad Sci USA 110:5,069–5,073

    Article  Google Scholar 

  • Ellis MB, Ellis JP (1997) Microfungi on land plants. Richmond Publishing, London

    Google Scholar 

  • Ellis MB, Ellis JP (1998) Microfungi on miscellaneous substrates: an identification handbook. Richmond Publishing, London

    Google Scholar 

  • Elsik WC, Jarzen DM (2009) New species of the late Cenozoic fungal form-genus Mediaverrunites Jarzen & Elsik 1986 ex Nandi & Sinha 2007. Palynology 33:99–104

    Google Scholar 

  • Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Farrant JM, Lehner A, Cooper K, Wiswedel S (2009) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57:65–79

    Article  Google Scholar 

  • Fey M (2010) Soils of South Africa—their distribution, properties, classification, use and environmental significance. Cambridge University Press, Cape Town

    Google Scholar 

  • Galley C, Bytebier B, Bellstedt DU, Linder HP (2007) The Cape element in the Afrotemperate flora: from Cape to Cairo? Proc R Soc B 274:535–543

    Article  Google Scholar 

  • Garcia D, Stchigel AM, Cano J, Guarro J, Hawksworth DL (2004) A synopsis and re-circumscription of Neurospora (syn. Gelasinospora) based on ultrastructural and 28S rDNA sequence data. Mycol Res 108:1,119–1,142

    Article  Google Scholar 

  • Grab SW (1999) Block and debris deposits in the high Drakensberg, Lesotho, southern Africa: implications for high altitude slope processes. Geogr Ann 81A:1–16

    Article  Google Scholar 

  • Grimm EC (1993) TILIA: a pollen program for analysis and display. Illinois State Museum, Springfield

    Google Scholar 

  • Grimm EC (2004) TGView. Version 2.0.2. Illinois State Museum Research Collection Center, Springfield

    Google Scholar 

  • Hammer Ø, Harper D (2006) Palaeontological data analysis. Blackwell, Oxford

    Google Scholar 

  • Hilliard OM (1987) Grasses, sedges, restiads and rushes of the Natal Drakensberg (Ukhahlamba), Series 2. University of Natal Press, Pietermaritzburg

    Google Scholar 

  • Hilliard OM, Burtt BL (1987) The botany of the southern Natal Drakensberg. Annals of the Kirstenbosch Botanic Gardens number 15, Cape Town

  • Huffman TN (2007a) The Early Iron Age at Broederstroom and around the ‘Cradle of Humankind’. In: Bonner P, Esterhuysen A, Jenkins T (eds) Search for origins: science, history, and South Africa’s ‘Cradle of Humankind’. Wits University Press, Johannesburg, pp 148–161

    Google Scholar 

  • Huffman TN (2007b) Handbook to the Iron Age: the archaeology of pre-colonial farming societies in southern Africa. University of KwaZulu-Natal Press, Pietermaritzburg

    Google Scholar 

  • Killick DJB (1994) Drakensberg Alpine Region—Lesotho and South Africa. In: Davis SD, Heywood VH (eds) Centres of plant diversity. Oxford University Press, Oxford, pp 257–260

    Google Scholar 

  • Kołaczek P, Zubek S, Błaszokowski A, Mleczko P, Margielewski W (2013) Erosion of plant succession—how to interpret the presence of arbuscular mycorrhizal fungi (Glomeromycota) spores in pollen profiles collected from mires. Rev Palaeobot Palynol 189:29–37

    Article  Google Scholar 

  • Krikun J, Bernier CC (1990) Morphology of microsclerotia of Verticillium dahlia in roots of gramineous plants. Can J Plant Pathol 12:439–441

    Article  Google Scholar 

  • Kutzbach JE, Guetter PJ (1986) The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years. J Atmos Sci 43:1,726–1,759

    Article  Google Scholar 

  • Lodder J (2012) The late Quaternary palaeo-environments of a subalpine wetland in Cathedral Peak, KwaZulu-Natal Drakensberg. Unpublished MSc Thesis, University of KwaZulu-Natal

  • Lundqvist N (1972) Nordic Sordariaceae s. lat. Symbolae Botanicae Upsalienses 20, Uppsala

  • MacPherson J (2009) Applying palaeoecology to conservation: a long-term perspective for informed management of a fynbos nature reserve. Plymouth Stud Sci 2:218–269

    Google Scholar 

  • Marker ME (1995) Late Quaternary environmental implications from sedimentary sequences at two high altitude Lesotho sites. S Afr J Sci 91:294–298

    Google Scholar 

  • Marker ME (1998) New radiocarbon dates from Lesotho. S Afr J Sci 94:239–240

    Google Scholar 

  • McCormack FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere calibration, 0–11.0 cal. kyr BP. Radiocarbon 46:1,087–1,092

    Google Scholar 

  • Meter EB, Edwards TJ, Rennie MA, Granger JE (2002) A checklist of the plants of Mahwaqa Mountain, KwaZulu-Natal. BOTHALIA 32:101–115

    Google Scholar 

  • Midgley DC, Pitman WV, Middleton BJ (1994) Surface water resources of South Africa 1990; Volume V Appendices, Drainage Regions M, N, P, Q, R, S and T, Eastern Escarpment, Appendices. WRC Report number 298/5.1/94. Water Research Commission, Pretoria

  • Milanesi C, Vignani R, Ciampolini F, Faleri C, Cattani L, Moroni A, Arrighi S, Scali M, Tiberi P, Sensi E, Wang W, Cresti M (2006) Ultrastructure and DNA sequence analysis of single Concentricystis cells from Alta Val Tiberina Holocene sediment. J Archaeol Sci 33:1,081–1,087

    Article  Google Scholar 

  • Mills SC, Grab SW, Rea BR, Carr SJ, Farrow A (2012) Shifting westerlies and precipitation patterns during the Late Pleistocene in southern Africa determined using glacier reconstruction and mass balance modeling. Quat Sci Rev 55:145–159

    Article  Google Scholar 

  • Montoya E, Rull V, van Geel B (2010) Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes. Palaeogeogr Palaeoclimatol Palaeoecol 297:169–183

    Article  Google Scholar 

  • Mooney SD, Tinner W (2011) The analysis of charcoal in peat and organic sediments. Mires Peat 7:1–18

    Google Scholar 

  • Morrison K (1994) Monitoring regional fire history through size-specific analysis of microscopic charcoal: the last 600 years in South India. J Archaeol Sci 21:675–685

    Article  Google Scholar 

  • Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria

  • Mucina L, Hoare DB, Lötter MC, Du Preez PJ, Rutherford MC, Scott-Shaw CR, Bredenkamp GJ, Powrie LW, Scott L, Camp KGT, Cilliers SS, Bezuidenhout H, Mostert TH, Siebert SJ, Winter PJD, Burrows JE, Dobson L, Ward RA, Stalmans M, Oliver EGH, Siebert F, Schmidt E, Kobisi K, Kose L (2006) Grassland biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 348–437

    Google Scholar 

  • Neke KS, Du Plessis MA (2004) The threat of transformation: quantifying the vulnerability of grasslands in South Africa. Conserv Biol 18:466–477

    Google Scholar 

  • Neumann FH, Stager JC, Scott L, Venter HJT, Weyhenmeyer C (2008) Holocene vegetation and climate records from Lake Sibaya, KwaZulu-Natal (South Africa). Rev Palaeobot Palynol 152:113–128

    Article  Google Scholar 

  • Neumann F, Scott L, Bousman CB, Van As L (2010) A Holocene pollen sequence and vegetation changes at Lake Eteza, KwaZulu-Natal (South Africa). Rev Palaeobot Palynol 162:39–53

    Article  Google Scholar 

  • Norström E, Scott L, Partridge TC, Risberg J, Holmgren K (2009) Reconstruction of environmental and climate changes at Braamhoek wetland, eastern escarpment South Africa, during the last 16000 years with emphasis on the Pleistocene–Holocene transition. Palaeogeogr Palaeoclimatol Palaeoecol 271:240–258

    Article  Google Scholar 

  • O’Connor TG, Bredenkamp GJ (2003) Grassland. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of southern Africa. Cambridge University Press, Cambridge, pp 215–257

    Google Scholar 

  • Partridge TC (1997) Cainozoic environmental change over Southern Africa, with special emphasis on the last 20000 years. Prog Phys Geogr 21:3–22

    Article  Google Scholar 

  • Partridge TC, Botha GA, Haddon IG (2006) Cenozoic deposits of the interior. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Council for Geoscience, Pretoria, pp 585–604

    Google Scholar 

  • Pooley E (2003) Mountain flowers a field guide to the flora of the Drakensberg and Lesotho. The Flora Publications Trust, Durban

    Google Scholar 

  • Quick LJ, Chase BM, Meadows ME, Scott L, Reimer PJ (2011) A 19.5 kyr vegetation history from the central Cederberg Mountains, South Africa: palynological evidence from rock hyrax middens. Palaeogeogr Palaeoclimatol Palaeoecol 309:253–270

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, Van der Plicht J, Weyhenmeyer CE (2004) INTCAL 04 terrestrial radiocarbon age calibration, 0–26 KYR BP. Radiocarbon 46:1,029–1,058

    Google Scholar 

  • Renssen H, Seppä H, Crosta X, Goosse H, Roche DM (2012) Global characterization of the Holocene Thermal Maximum. Quat Sci Rev 48:7–19

    Article  Google Scholar 

  • Retallack GJ (2001) Cenozoic expansion of grasslands and climatic cooling. J Geol 109:407–426

    Article  Google Scholar 

  • Rooseboom A, Verster E, Zietsman HL, Lotriet HH (1992) The development of the new sediment yield map of southern Africa. WRC Report 297/2/92. Water Research Commission

  • Rutherford MS, Westfall RH (1986) Biomes of southern Africa: an objective categorization. Mem Bot Surv S Afr 54:1–98

    Google Scholar 

  • Schlütz F, Shumilovskikh LS (2013) On the relation of Potamomyces armatisporus to the fossil form-type Mediaverrunites and its taxonomical and ecological implications. Fungal Ecol 6:309–315

    Article  Google Scholar 

  • Schulze RE (1982) Agrohydrology and climatology of Natal. Agricultural Catchments Research Unit Report number 14, Pretoria

  • Scott L (1982a) A Late Quaternary pollen record from the Transvaal bushveld, South Africa. Quat Res 17:339–370

    Article  Google Scholar 

  • Scott L (1982b) Late Quaternary fossil pollen grains from the Transvaal, South Africa. Rev Palaeobot Palynol 36:241–278

    Article  Google Scholar 

  • Scott L (1987) Pollen analysis of hyena coprolites and sediments from Equus cave, Taung, southern Kalahari (S. Africa). Quat Res 28:144–156

    Article  Google Scholar 

  • Scott L (1989) Late Quaternary vegetation history and climatic change in the eastern O.F.S., South Africa. S Afr J Bot 55(1):107–116

    Google Scholar 

  • Scott L (1992) Environmental implications and origin of microscopic Pseudoschizaea Thiergart and Franz ex R. Potonié emend. in sediments. J Biogeogr 19:349–354

    Article  Google Scholar 

  • Scott L (1999) The vegetation history and climate in the savanna biome, South Africa, since 190,000 ka: a comparison of pollen data from the Tswaing crater (the Pretoria Saltpan) and Wonderkrater. Quat Int 57/58:215–223

    Article  Google Scholar 

  • Scott L (2002a) Grassland development under glacial and interglacial conditions in southern Africa: review of pollen, phytolith and isotope evidence. Palaeogeogr Palaeoclimatol Palaeoecol 177:47–57

    Article  Google Scholar 

  • Scott L (2002b) Microscopic charcoal in sediments: Quaternary fire history of the grassland and savanna regions in South Africa. J Quat Sci 17:77–86

    Article  Google Scholar 

  • Scott L, Steenkamp M (1996) Environmental history and recent human disturbance at coastal Lake Teza, Kwazulu/Natal. S Afr J Sci 92:348–350

    Google Scholar 

  • Scott L, Holmgren K, Talma AS, Woodborne S, Vogel JC (2003) Age interpretation of the Wonderkrater spring sediments and vegetation change in the savanna biome, Limpopo Province, South Africa. S Afr J Sci 99:484–488

    Google Scholar 

  • Scott L, Neumann FH, Brook GA, Bousman CB, Norström E, Metwally AA (2012) Terrestrial fossil Pollen Evidence of Climate Change during the last 26 Thousand Years in Southern Africa. Quat Sci Rev 32:100–118

    Article  Google Scholar 

  • Stix E (1960) Pollenmorphologische Untersuchungen an Compositen. Grana 2/2:41–114

    Google Scholar 

  • Stockmarr J (1971) Tablet with spores used in absolute pollen analysis. Pollen Spores 13:614–621

    Google Scholar 

  • Tyson PD, Preston-Whyte RA, Schulze RE (1976) The climate of the Drakensberg. The Town and Regional Planning Commission, Pietermaritzburg

    Google Scholar 

  • Van Geel B (1976) A palaeoecological study of Holocene peat bog sections, based on the analysis of pollen, spores and macro and microscopic remains of fungi, algae, cormophytes and animals. Academisch proefschrift. Hugo de Vries laboratorium, Universiteit van Amsterdam, Amsterdam

  • Van Geel B, Gelorini V, Lyaruu A, Aptroot A, Rucina S, Marchant R, Sinninghe Damste JS, Verschuren D (2011) Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev Palaeobot Palynol 164:174–190

    Google Scholar 

  • Van Wyk AE, Smith GF (2001) Regions of floristic endemism in southern Africa. Umdaus Press, Pretoria

    Google Scholar 

  • Van Zinderen Bakker EM (1953–1970) South African pollen grains and spores. Part I–III. Balkema, Amsterdam

  • Van Zinderen Bakker EM (1955) A preliminary survey of peat bogs of the Alpine belt of Northern Basutoland. Acta Geogr 14:413–422

    Google Scholar 

  • Vogel JC, Fuls A, Ellis RP (1978) The geographical distribution of Kranz grasses in South Africa. S Afr J Sci 74:209–215

    Google Scholar 

  • White JF (1987) Widespread distribution of endophytes in the Poaceae. Plant Dis 71:340–342

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Council for Geoscience and PAST (Palaeontological Scientific Trust) and the Scatterlings of Africa Programme. This work is based on the research supported by the National Research Foundation. Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s) and the NRF does not accept any liability in this regard. A. Niehus processed the samples. We are thankful to W. Swart, S. Grab, M. Krings, and L. Shumilovskikh for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank H. Neumann.

Additional information

Communicated by T. Litt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, F.H., Botha, G.A. & Scott, L. 18,000 years of grassland evolution in the summer rainfall region of South Africa: evidence from Mahwaqa Mountain, KwaZulu-Natal. Veget Hist Archaeobot 23, 665–681 (2014). https://doi.org/10.1007/s00334-014-0445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-014-0445-3

Keywords

Navigation