Skip to main content

Advertisement

Log in

Early Holocene vegetation and climate dynamics with particular reference to the 8.2 ka event: pollen and macrofossil evidence from a small lake in western Ireland

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

A detailed, AMS 14C-dated, pollen record from Cooney Lough, a small lake in Co. Sligo, western Ireland, is presented. Fluctuations in the pollen curves, indicative of changes in pollen productivity and shifts in woodland composition, suggest that the period spanned by the record (9.4–6 ka) was characterised by considerable climate instability. In all, five climate anomalies are recognised (CA-1 to CA-5). The most pronounced anomaly, CA-3, is dated to 8.45–8.2 ka, with the high point of that anomaly (CA-3b) centred on 8.2 ka and lasting about a century. On the basis of age, and also intensity and structure, CA-3b is equated with the 8.2 ka event as recorded in many proxies and especially the Greenland ice-core δ18O records. Key features of the event as recorded in the lake sediments include increased representation of Betula and Pinus (birch and pine; both widely recognised as cold tolerant trees) and a decline in Corylus and also Quercus (hazel and oak; both thermophilous). The anomalies CA-1 and CA-2 precede the 8.2 ka event, the former corresponding probably to the 9.2 ka event and the latter more pronounced, centred on ca. 8.8 ka and with a duration of approximately 100 years. The CA-4 event, at ca. 7.5 ka, is relatively minor as regards intensity while CA-5, which began at ca. 7.1 ka, initiated what seems to be a more long-lasting shift towards cooler conditions. The relationship of these developments to the arrival and expansion of alder (Alnus), a key feature of the Boreal/Atlantic transition in European, including Irish pollen records is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alley RB, Ágústsdóttir AM (2005) The 8 k event: cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24:1,123–1,149

    Google Scholar 

  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability—a prominent, widespread event 8200 yr ago. Geology 25:483–486

    Article  Google Scholar 

  • Atkinson MD (1992) Betula pendula Roth (B. verrucosa Ehrh.) and B. pubescens Ehrh. J Ecol 80:837–870

    Article  Google Scholar 

  • Barber DC, Dyke A, Hillaire-Marcel C, Jennings AE, Andrews JT, Kerwin MW, Bilodeau G, McNeely R, Southon J, Morehead MD, Gagnon JM (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–348

    Article  Google Scholar 

  • Barnosky CW (1988) A late-glacial and post-glacial pollen record from Dingle Peninsula, County Kerry. Proc R Ir Acad 88B:23–37

    Google Scholar 

  • Behre KE (1978) Die Klimaschwankungen im europäischen Präboreal. Petermanns Geogr Mitt 122:97–102

    Google Scholar 

  • Berger JF, Guilaine J (2009) The 8200 cal B.P. abrupt environmental change and the Neolithic transition: a mediterranean perspective. Quat Int 200:31–49

    Article  Google Scholar 

  • Bergh S (1995) Landscape of the monuments. A study of the passage tombs of the Cúil Irra region, Co. Sligo, Ireland. Arkeologiska Undersökningar 6:1–256

    Google Scholar 

  • Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Bingham A (2011) Long-term environmental change in lower Lough Corrib and its catchment: a multidisciplinary palaeoecological study. PhD thesis (unpubl.), National University of Ireland Galway

  • Blaauw M (2012) Out of tune: the dangers of aligning proxy archives. Quat Sci Rev 36:38–49

    Article  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, DeMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1,257–1,266

    Google Scholar 

  • Daley TJ, Street-Perrott FA, Loader NJ, Barber KE, Hughes PDM, Fisher EH, Marshall JD (2009) Terrestrial climate signal of the “8200 yr B.P. cold event” in the Labrador Sea region. Geology 37:831–834

    Article  Google Scholar 

  • Daley TJ, Thomas ER, Holmes JA, Street-Perrott FA, Chapman MR, Tindall JC, Valdes PJ, Loader NJ, Marshall JD, Wolff EW, Hopley PJ, Atkinson T, Barber KE, Fisher EH, Robertson I, Hughes PDM, Roberts CN (2011) The 8200 yr B.P. cold event in stable isotope records from the North Atlantic region. Glob Planet Chang 79:288–302

    Article  Google Scholar 

  • Diefendorf AF, Patterson WP, Mullins HT, Tibert N, Martini A (2006) Evidence for high-frequency late glacial to mid-Holocene (16800 to 5500 cal yr B.P.) climate variability from oxygen isotope values of Lough Inchiquin, Ireland. Quat Res 65:78–86

    Article  Google Scholar 

  • Diefendorf AF, Patterson WP, Holmden C, Mullins HT (2008) Carbon isotopes of marl and lake sediment organic matter reflect terrestrial landscape change during the late glacial and early Holocene (16800 to 5540 cal yr B.P.): a multiproxy study of lacustrine sediments at Lough Inchiquin, western Ireland. J Paleolimnol 39:101–115

    Article  Google Scholar 

  • Domínguez-Villar D, Fairchild IJ, Baker A, Wang XF, Edwards RL, Cheng H (2009) Oxygen isotope precipitation anomaly in the North Atlantic region during the 8.2 ka event. Geology 37:1,095–1,098

    Google Scholar 

  • Edwards KJ, Langdon PG, Sugden H (2007) Separating climatic and possible human impacts in the early Holocene: biotic response around the time of the 8200 cal. yr B.P. event. J Quat Sci 22:77–84

    Article  Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, Stuttgart

    Google Scholar 

  • Ellison CRW, Chapman MR, Hall IR (2006) Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312:1,929–1,932

    Google Scholar 

  • Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, New York

  • Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F (2006) Modification and preservation of environmental signals in speleothems. Earth-Sci Rev 75:105–153

    Article  Google Scholar 

  • Feeser I (2009) Palaeoecological investigations towards reconstruction of Holocene environmental change in the Burren, Co. Clare, with particular reference to Mullach Mór and selected Burren uplands. PhD thesis (unpubl.), National University of Ireland Galway

  • Feeser I, O’Connell M (2010) Late Holocene land-use and vegetation dynamics in an upland karst region based on pollen and coprophilous fungal spore analyses: an example from the Burren, western Ireland. Veget Hist Archaeobot 19:409–426

    Article  Google Scholar 

  • Firbas F (1949) Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen, vol 1. Fischer, Jena

    Google Scholar 

  • Ghilardi B, O’Connell M (2012) Woodland dynamics and land use in north Sligo, Ireland: fine-resolution pollen analytical investigations at Lough Dargan with particular reference to prehistoric farming impact. Boreas (in press)

  • Giesecke T, Bjune AE, Chiverrell RC, Seppä H, Ojala AEK, Birks HJB (2008) Exploring Holocene continentality changes in Fennoscandia using present and past tree distributions. Quat Sci Rev 27:1,296–1,308

    Google Scholar 

  • Godwin H (1975) The history of the British flora, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hammer CU, Clausen HB, Tauber H (1986) Ice-core dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C time scale. Radiocarbon 28:284–291

    Google Scholar 

  • Head K, Turney CSM, Pilcher JR, Palmer JG, Baillie MGL (2007) Problems with identifying the ‘8200-year cold event’ in terrestrial records of the Atlantic seaboard: a case study from Dooagh, Achill Island, Ireland. J Quat Sci 22:65–75

    Article  Google Scholar 

  • Hede MU, Rasmussen P, Noe-Nygaard N, Clarke AL, Vinebrooke RD, Olsen J (2010) Multiproxy evidence for terrestrial and aquatic ecosystem responses during the 8.2 ka cold event as recorded at Højby Sø, Denmark. Quat Res 73:485–496

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Holmes J, Lowe J, Wolff E, Srokosz M (2011) Rapid climate change: lessons from the recent geological past. Glob Planet Chang 79:157–162

    Article  Google Scholar 

  • Hormes A, Blaauw M, Dahl SO, Nesje A, Possnert G (2009) Radiocarbon wiggle-match dating of proglacial lake sediments—implications for the 8.2 ka event. Quat Geochronol 4:267–277

    Article  Google Scholar 

  • Huang CC (2002) Holocene landscape development and human impact in the Connemara uplands, western Ireland. J Biogeogr 29:153–165

    Article  Google Scholar 

  • Hughes PDM, Blundell A, Charman DJ, Bartlett S, Daniell JRG, Wojatschke A, Chambers FM (2006) An 8500 cal. year multi-proxy climate record from a bog in eastern Newfoundland: contributions of meltwater discharge and solar forcing. Quat Sci Rev 25:1,208–1,227

    Google Scholar 

  • Huntley B (2012) Reconstructing palaeoclimates from biological proxies: some often overlooked sources of uncertainty. Quat Sci Rev 31:1–16

    Article  Google Scholar 

  • Ilyashuk EA, Koinig KA, Heiri O, Ilyashuk BP, Psenner R (2011) Holocene temperature variations at a high-altitude site in the Eastern Alps: a chironomid record from Schwarzsee ob Sölden, Austria. Quat Sci Rev 30:176–191

    Article  Google Scholar 

  • Iversen J (1944) Viscum, Hedera and Ilex as climate indicators. Geol Fören Stockholms Förhan 66:463–483

    Article  Google Scholar 

  • Jessen K (1949) Studies in the late Quaternary deposits and flora-history of Ireland. Proc R Ir Acad 52B:85–290

    Google Scholar 

  • Johnsen SJ, Dahljensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdottir AE, White J (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16:299–307

    Article  Google Scholar 

  • Kelly DL, Kirby EN (1982) Irish native woodlands over limestone. J Life Sci (R Dublin Soc) 3:181–198

    Google Scholar 

  • Kerschner H, Hertl A, Gross G, Ivy-Ochs S, Kubik PW (2006) Surface exposure dating of moraines in the Kromer valley (Silvretta Mountains, Austria)—evidence for glacial response to the 8.2 ka event in the Eastern Alps? Holocene 16:7–15

    Google Scholar 

  • Kleiven HF, Kissel C, Laj C, Ninnemann US, Richter TO, Cortijo E (2008) Reduced North Atlantic Deep Water coeval with the glacial Lake Agassiz freshwater outburst. Science 319:60–64

    Article  Google Scholar 

  • Klitgaard-Kristensen D, Sejrup HP, Haflidason H, Johnsen S, Spurk M (1998) A regional 8200 cal. yr B.P. cooling event in northwest Europe, induced by final stages of the Laurentide ice-sheet deglaciation? J Quat Sci 13:165–169

    Article  Google Scholar 

  • Lang B, Bedford A, Brooks SJ, Jones RT, Richardson N, Birks HJB, Marshall JD (2010) Early-Holocene temperature variability inferred from chironomid assemblages at Hawes Water, northwest England. Holocene 20:943–954

    Article  Google Scholar 

  • Litt T, Schölzel C, Kühl N, Brauer A (2009) Vegetation and climate history in the Westeifel volcanic field (Germany) during the past 11 000 years based on annually laminated lacustrine maar sediments. Boreas 38:679–690

    Article  Google Scholar 

  • MacDermot CV, Long CB, Harney SJ (1996) Geology of Sligo-Leitrim. A geological description of Sligo, Leitrim, and adjoining parts of Cavan, Fermanagh, Mayo and Roscommon, to accompany the bedrock geology 1:100,000 scale map series, sheet 7, Sligo-Leitrim. Geological Survey of Ireland, Dublin

  • Marshall JD, Lang B, Crowley SF, Weedon GP, van Calsteren P, Fisher EH, Holme R, Holmes JA, Jones RT, Bedford A, Brooks SJ, Bloemendal J, Kiriakoulakis K, Ball JD (2007) Terrestrial impact of abrupt changes in the North Atlantic thermohaline circulation: early Holocene, UK. Geology 35:639–642

    Article  Google Scholar 

  • Mayewski PA, Rohling EE, Stager JC, Karlen W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, Van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62:243–255

    Article  Google Scholar 

  • McCune B, Mefford MJ (2011) PC-ORD. Multivariate analysis of ecological data. Ver. 6. MjM Software, Gleneden Beach

  • McDermott F, Mattey DP, Hawkesworth C (2001) Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 294:1,328–1,331

    Google Scholar 

  • Mingram J, Negendank JFW, Brauer A, Berger D, Hendrich A, Köhler M, Usinger H (2007) Long cores from small lakes—recovering up to 100 m-long lake sediment sequences with a high-precision rod-operated piston corer (Usinger-corer). J Paleolimnol 37:517–528

    Article  Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific, London

    Google Scholar 

  • Nesje A (2009) Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quat Sci Rev 28:2119–2136

    Article  Google Scholar 

  • Nesje A, Dahl SO (2001) The Greenland 8200 cal. yr B.P. event detected in loss-on ignition profiles in Norwegian lacustrine sediment sequences. J Quat Sci 16:155–166

    Article  Google Scholar 

  • Nesje A, Matthews JA, Dahl SO, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. Holocene 11:267–280

    Article  Google Scholar 

  • Nesje A, Bjune AE, Bakke J, Dahl SO, Lie Ø, Birks HJB (2006) Holocene palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular reference to the 8200 cal. yr B.P. event. Holocene 16:717–729

    Article  Google Scholar 

  • Nowaczyk NR (2001) Logging of magnetic susceptibility. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments, basin analysis, coring, and chronological techniques. Basin analysis, coring, and chronological techniques, vol 1. Kluwer, Dordrecht, pp 155–170

  • O’Connell M, Molloy K (2005) Native woodland composition and dynamics: a long-term perspective based on a Holocene pollen profile from Inis Oírr, Aran Islands, western Ireland. In: Doyle C, Little D (eds) Ireland’s native woodlands (on CD-ROM). Woodlands of Ireland, Dublin, pp 20–47

    Google Scholar 

  • Paus A (2010) Vegetation and environment of the Rødalen alpine area, Central Norway, with emphasis on the early Holocene. Veget Hist Archaeobot 19:29–51

    Article  Google Scholar 

  • Paus A, Velle G, Berge J (2011) The lateglacial and early Holocene vegetation and environment in the Dovre mountains, central Norway, as signalled in two lateglacial nunatak lakes. Quat Sci Rev 30:1,780–1,796

    Google Scholar 

  • Peck JE (2010) Multivariate analysis for ecologists. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Prasad S, Brauer A, Rein B, Negendank JFW (2006) Rapid climate change during the early Holocene in western Europe and Greenland. Holocene 16:153–158

    Article  Google Scholar 

  • Ramsey CB (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60

    Article  Google Scholar 

  • Ramsey CB (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Google Scholar 

  • Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen ML, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res-Atmos 111:D06102. doi:10.1029/2005JD006079

    Article  Google Scholar 

  • Rasmussen S, Vinther B, Clausen H, Andersen K (2007) Early Holocene climate oscillations recorded in three Greenland ice cores. Quat Sci Rev 26:1907–1914

    Article  Google Scholar 

  • Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord. Laboratoire de Botanique Historique et Palynologie, Faculté des Sciences et Techniques Saint-Jérôme, Marseille

    Google Scholar 

  • Reille M (1995) Pollen et spores d’Europe et d’Afrique du nord. Supplement 1. Laboratoire de Botanique Historique et Palynologie, Faculté des Sciences et Techniques Saint-Jérôme, Marseille

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, Van der Plicht J, Weyhenmeye CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal B.P. Radiocarbon 51:1,111–1,150

  • Richardson DM, Rundel PW (1998) Ecology and biogeography of Pinus: an introduction. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 3–46

    Google Scholar 

  • Rohling EJ, Pälike H (2005) Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434:975–979

    Article  Google Scholar 

  • Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009) Last nine-thousand years of temperature variability in Northern Europe. Clim Past Discuss 5:523–535

    Google Scholar 

  • Starkel L, Goslar T, Ralska-Jasiewiczowa M, Demske D, Różański K, Łącka B, Pelisiak A, Szeroczyńska K, Wicik B, Więckowski K (1998) Discussion of the Holocene events recorded in the Lake Gościąż, sediments. In: Ralska-Jasiewiczowa M, Goslar T, Madeyska T, Starkel L (eds) Lake Gościąż, central Poland. A monographic study. Part 1. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, pp 239–246

  • Stolze S, Dörfler W, Monecke T, Nelle O (2012) Evidence for climatic variability and its impact on human development during the Neolithic from Loughmeenaghan, County Sligo, Ireland. J Quat Sci 27:393–403

    Article  Google Scholar 

  • Stuiver M, Reimer PJ, Reimer RW (2011) CALIB manual http://calib.qub.ac.uk/calib/manual/. Accessed 1 Jan 2011

  • Tallantire PA (2002) The early-Holocene spread of hazel (Corylus avellana L.) in Europe north and west of the Alps: an ecological hypothesis. Holocene 12:81–96

    Article  Google Scholar 

  • Thomas ER, Wolff EW, Mulvaney R, Steffensen JP, Johnsen SJ, Arrowsmith C, White JWC, Vaughn B, Popp T (2007) The 8.2 ka event from Greenland ice cores. Quat Sci Rev 26:70–81

    Article  Google Scholar 

  • Tibert NE, Patterson WP, Diefendorf AF, Martini A, Stanton C (2007) Holocene temperature variability in western Ireland: evidence from limnic ostracode assemblages and stable isotope values. Stratigraphy 4:353–361

    Google Scholar 

  • Tindall JC, Valdes PJ (2011) Modeling the 8.2 ka event using a coupled atmosphere–ocean GCM. Glob Planet Chang 79:312–321

    Article  Google Scholar 

  • Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29:551–554

    Article  Google Scholar 

  • van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, Van Reenen G, Hakbijl T (2003) Environmental reconstruction of a Roman period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883

    Article  Google Scholar 

  • Veski S, Seppä H, Ojala AEK (2004) Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology 32:681–684

    Article  Google Scholar 

  • Vincent PJ, Lord TC, Telfer MW, Wilson P (2011) Early Holocene loessic colluviation in northwest England: new evidence for the 8.2 ka event in the terrestrial record? Boreas 40:105–115

    Article  Google Scholar 

  • von Grafenstein U, Erlenkeuser H, Müller J, Jouzel J, Johnsen S (1998) The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim Dyn 14:73–81

    Article  Google Scholar 

  • Waddell J (2010) The prehistoric archaeology of Ireland, 3rd edn. Wordwell, Bray

    Google Scholar 

  • Walker M, Johnsen S, Rasmussen SO, Popp T, Steffensen JP, Gibbard P, Hoek W, Lowe J, Andrews J, Björck S, Cwynar LC, Hughen K, Kershaw P, Kromer B, Litt T, Lowe DJ, Nakagawa T, Newnham R, Schwander J (2009) Formal definition and dating of the GSSP (global stratotype section and point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J Quat Sci 24:3–17

    Article  Google Scholar 

  • Walsh M, Lee J, Burke PJ (1976) County Sligo soils and their grazing capacity. Farm Food Res (Foras Taluntais) 7:128–131

    Google Scholar 

  • Warren G (2003) Life in the trees: Mesolithic people and the woods of Ireland. Archaeol Irel 17(3):20–23

    Google Scholar 

  • Watts WA (1980) Regional variation to the response of vegetation to lateglacial climatic events in Europe. In: Lowe JJ, Gray JM, Robinson JE (eds) Studies in the lateglacial of North-West Europe. Pergamon Press, Oxford, pp 1–21

    Google Scholar 

  • Wiersma AP, Renssen H (2006) Model-data comparison for the 8.2 ka B.P. event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quat Sci Rev 25:63–88

    Article  Google Scholar 

  • Wiersma AP, Roche DM, Renssen H (2011) Fingerprinting the 8.2 ka event climate response in a coupled climate model. J Quat Sci 26:118–127

    Article  Google Scholar 

  • Woodman PC (2009) Ireland’s place in the European Mesolithic: why it’s ok to be different. In: McCartan S, Schulting R, Warren G, Woodman P (eds) Mesolithic horizons, vol 1. Oxbow Books, Oxford, pp xxxvii–xlvi

Download references

Acknowledgments

W. Dörfler, I. Feeser, O. Nelle and S. Stolze (CAU, Kiel), and P. O’Rafferty (NUIG), assisted with coring. Local landowners R. Hunter and A. Young facilitated ready access to Cooney Lough and M.A. Timoney (Sligo) provided background information. I. Feeser made available his pollen data plotting program CountPol and advised on the use of OXCAL. Karen Molloy (NUIG) helped with pollen identification and other aspects of the research including data evaluation. F. McDermott (UCD) gave helpful comments on the draft manuscript. The research was supported by an NUI Galway Postgraduate Scholarship to B. Ghilardi. The 14C dates were funded by the Thomas Crawford Hayes Research Fund Scheme (NUIG; eight dates) and a Bill Watts 14CHRONO Award from IQUA in collaboration with 14Chrono Centre, QUB (three dates). A research grant from the A. von Humboldt Foundation to MO’C and a three-month DAAD scholarship to BG facilitated research stays at the Deutsches GeoForschungsZentrum (GFZ), Potsdam in 2011. The facilities provided by A. Brauer and helpful discussions with M. Czymzik while at the GFZ are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O’Connell.

Additional information

Communicated by K.-E. Behre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghilardi, B., O’Connell, M. Early Holocene vegetation and climate dynamics with particular reference to the 8.2 ka event: pollen and macrofossil evidence from a small lake in western Ireland. Veget Hist Archaeobot 22, 99–114 (2013). https://doi.org/10.1007/s00334-012-0367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-012-0367-x

Keywords

Navigation