Skip to main content
Log in

Turing and Turing–Hopf Bifurcations for a Reaction Diffusion Equation with Nonlocal Advection

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study the stability and the bifurcation properties of the positive interior equilibrium for a reaction–diffusion equation with nonlocal advection. Under rather general assumption on the nonlocal kernel, we first study the local well posedness of the problem in suitable fractional spaces and we obtain stability results for the homogeneous steady state. As a special case, we obtain that “standard” kernels such as Gaussian, Cauchy, Laplace and triangle, will lead to stability. Next we specify the model with a given step function kernel and investigate two types of bifurcations, namely Turing bifurcation and Turing–Hopf bifurcation. In fact, we prove that a single scalar equation may display these two types of bifurcations with the dominant wave number as large as we want. Moreover, similar instabilities can also be observed by using a bimodal kernel. The resulting complex spatiotemporal dynamics are illustrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bernoff, A.J., Topaz, C.M.: Nonlocal aggregation models: a primer of swarm equilibria. SIAM Rev. 55(4), 709–747 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Bodnar, M., Velazquez, J.J.L.: An integro-differential equation arising as a limit of individual cell-based models. J. Differ. Equ. 222, 341–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Burger, M., Di Francesco, M.: Large time behaviour of nonlocal aggregation models with nonlinear diffusion. Netw. Heterog. Media 3, 749–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13. Oxford, Oxford (1998)

    MATH  Google Scholar 

  • Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8(2), 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Crandall, M.G., Rabinowitz, P.H.: The Hopf bifurcation theorem in infinite dimensions. Arch. Ration. Mech. Anal. 67(1), 53–72 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Ducrot, A., Magal, P.: Asymptotic behaviour of a non-local diffusive logistic equation. SIAM J. Math. Anal. 46, 1731–1753 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Ducrot, A., Le Foll, F., Magal, P., Murakawa, H., Pasquier, J., Webb, G.F.: An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition. Math. Model. Methods Appl. Sci. 21(supp01), 871 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Engquist, B., Osher, S.: One-sided difference approximations for nonlinear conservation laws. Math. Comput. 36(154), 321–351 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Fiedler, B., Polácik, P.: Complicated dynamics of scalar reaction diffusion equations with a nonlocal term. Proc. R. Soc. Edinb. 115, 263–276 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Haragus, M., Iooss, G.: Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, pp. xii+329 (2011)

  • Hassard, B.D., Kazarinoff, N.D., Wan, Y.-H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  • Henry, D.: Geometric Theory of Semilinear Parabolic Equation. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Book  Google Scholar 

  • Hillen, T., Painter, K., Schmeiser, C.: Global existence for chemotaxis with finite sampling radius. Discrete Contin. Dyn. Syst. Ser. B 7(1), 125–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  • Leverentz, A.J., Topaz, C.M., Bernoff, A.J.: Asymptotic dynamics of attractive–repulsive swarms. SIAM J. Appl. Dyn. Syst. 8, 880–908 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Springer, Berlin (2012)

    MATH  Google Scholar 

  • Magal, P., Ruan, S.: On semilinear Cauchy problems with non-dense domain. Adv. Differ. Equ. 14(11/12), 1041–1084 (2009)

    MathSciNet  MATH  Google Scholar 

  • Magal, P., Ruan, S.: Theory and Applications of Abstract Semilinear Cauchy Problems. Springer (To appear)

  • Morale, D., Capasso, V., Oelschläger, K.: An interacting particle system modelling aggregation behaviour: from individuals to populations. J. Math. Biol. 50, 49–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Oelschläger, K.: Large systems of interacting particles and the porous medium equation. J. Differ. Equ. 88, 294–346 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Raoul, G.: Non-local interaction equations: stationary states and stability analysis. Differ. Integral Equ. 25, 417–440 (2012)

    MathSciNet  MATH  Google Scholar 

  • Smoller, J.: Shock Waves and Reaction–Diffusion Equations, vol. 258. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  • Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, Berlin (2012)

    Google Scholar 

  • Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  • Yagi, A.: Abstract Parabolic Evolution Equations and their Applications. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Magal.

Additional information

Communicated by Michael Ward.

Xiaoming Fu: The research of this author is supported by China Scholarship Council.

Appendix

Appendix

1.1 Reduced System

In this subsection, we give a brief calculation of the center manifold reduction as a supplement of Theorem 3.8. Recall our equation reads as follows:

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t}\begin{pmatrix}w(t)\\ \gamma (t)\end{pmatrix}=L\begin{pmatrix}w(t)\\ \gamma (t)\end{pmatrix}+R\begin{pmatrix}w(t)\\ \gamma (t)\end{pmatrix}, \end{aligned}$$

wherein we have set

$$\begin{aligned} L=\begin{pmatrix} \left( A+\partial _w {\tilde{F}}(0,\gamma _0)\right) &{} 0\\ 0 &{} 0\end{pmatrix}\in {\mathcal {L}}\left( H^2\times \mathbb {R},H^0\times \mathbb {R}\right) , \end{aligned}$$

and

$$\begin{aligned} R\begin{pmatrix}w\\ \gamma \end{pmatrix}=\begin{pmatrix}\tilde{F}(w,\gamma )-\partial _w{\tilde{F}}(0,\gamma _0)w\\ 0\end{pmatrix}. \end{aligned}$$

Recall also that \({\tilde{F}}\) and B are defined by

$$\begin{aligned} \tilde{F}(w,\gamma )= & {} \frac{b-\mu }{\gamma \mu } \left( K\circ w\right) ''+B(w,w)+\left( \frac{\mu ^2}{b+\gamma \mu w}-\mu \right) w+w,\\ B(w,w)= & {} \frac{\hbox {d}}{\hbox {d}x}\left( w \frac{\hbox {d}}{\hbox {d}x}K\circ w\right) , \end{aligned}$$

and we define

$$\begin{aligned} G(w,\gamma )={\tilde{F}}(w,\gamma )-\partial _w{\tilde{F}}(0,\gamma _0)w. \end{aligned}$$

Moreover, we also define \(\hat{A}= A+\partial _w {\tilde{F}}(0,\gamma _0) \) and let us observe that \( \hat{A}e_n=\lambda _n(\gamma _0)e_n \) for all \(n\in {\mathbb {Z}}\). Recall that the framework of 3.8 implies that we have, for some \(n_0\ge 1\),

$$\begin{aligned} \lambda _{\pm n_0}(\gamma _0)\in i\mathbb {R},\quad \mathrm {Re}(\lambda _n(\gamma _0))<0,\;\forall n\ne \pm n_0. \end{aligned}$$

To perform our center manifold reduction, we will need the following computations:

  • \( K\circ e_n= c_n(K)e_n\) for all \(n\in {\mathbb {Z}}\)

  • \( B(e_n,e_m)=-\left( \dfrac{\pi }{L}\right) ^2c_m(K)m(m+n)e_{m+n} \) for all \((n,m)\in {\mathbb {Z}}^2\).

Define the center space \( {\mathcal {E}}^c= \mathrm{span}\,\left( e_{\pm n_0}\right) \times \mathbb {R}\) and the stable space \( {\mathcal {E}}^s= \mathrm{span}\,\left( e_{\pm n_0}\right) ^{\perp }\times \lbrace 0\rbrace \) where \( \mathrm{span}\left( e_{\pm n_0}\right) \) denotes the vector space spanned by eigenfunctions \( e_{\pm n_0} \) while \( \mathrm{span}\left( e_{\pm n_0}\right) ^{\perp } \) denotes its orthogonal space for the \( L^2(-L,L)-\)inner product. We denote by \(\tilde{\Psi }:{\mathcal {E}}^c\rightarrow {\mathcal {E}}^s\) the local center manifold and in the sequel we will make use of the following notation

$$\begin{aligned} \tilde{\Psi }(x^c,\gamma )=\left( \Psi (x^c,\gamma ),0\right) \in \mathcal E^s,\text { for }(x_c,\gamma )\in {\mathcal {E}}^c\text { close to } (0,\gamma _0), \end{aligned}$$

and \(x^c=x_- e_{-n_0}+x_+e_{n_0}\). Since the center manifold is smooth (here \(C^\infty )\) we rewrite it as follows:

$$\begin{aligned} \Psi (x^c,\gamma )= & {} \sum _{n\ne \pm n_0}\Psi _n(x^c,\gamma )e_n=\sum _{n\ne \pm n_0}P_n(x^c,\gamma ) e_n\\&+\,O\left( \left( (\Vert x_c\Vert +|\gamma -\gamma _0|\right) ^3\right) \text { in }H^2, \end{aligned}$$

where, for each \(n\in {\mathbb {Z}}\setminus \{\pm n_0\}\), \(P_n(x^c,\gamma )\) is homogeneous polynomial of degree 2 for the variables \(x_-\), \(x_+\) and \((\gamma -\gamma _0)\). For notational simplicity, we also denote by \(P_{\pm n_0}(x^c,\gamma )\) the first-order polynomials

$$\begin{aligned} P_{-n_0}(x^c,\gamma )=x_-\text { and }P_{n_0}(x^c,\gamma )=x_+. \end{aligned}$$

Note that since the center manifold is real valued, one has

$$\begin{aligned} x_+=\overline{x}_-\text { and }\Psi _{-n}(x^c,\gamma )=\overline{\Psi _n(x^c,\gamma )},\;\forall n\ne \pm n_0. \end{aligned}$$

To compute the—center manifold—reduced system, let us introduce the center and stable projectors \(\Pi ^c\) and \(\Pi ^s\) as follows:

$$\begin{aligned} \Pi ^c\varphi =\sum _{n=\pm n_0} c_n(\varphi )e_n\text { and }\Pi ^s\varphi =\sum _{n\ne \pm n_0} c_n(\varphi )e_n, \end{aligned}$$

as well as the center and stable part of the linear operator \({\hat{A}}\), respectively, denoted by \({\hat{A}}^c\) and \({\hat{A}}^s\) and defined by

$$\begin{aligned} {\hat{A}}^c\varphi =\sum _{n=\pm n_0} c_n(\varphi )\lambda _n(\gamma _0)e_n\text { and }{\hat{A}}^s \varphi =\sum _{n\ne \pm n_0}\lambda _n(\gamma _0)c_n(\varphi )e_n. \end{aligned}$$

Next, the reduced system reads as

$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\hbox {d} x^c(t)}{\hbox {d}t}={\hat{A}}^c x^c(t)+\Pi ^c G\left( x^c(t)+\Psi \left( x^c(t),\gamma (t)\right) ,\gamma (t)\right) ,\\ \dfrac{\hbox {d}\gamma (t)}{\hbox {d}t}=0, \end{array}\right. } \end{aligned}$$
(5.1)

and the center manifold satisfies the following equation in the neighborhood of \((x^c,\gamma )=(0,,\gamma _0)\):

$$\begin{aligned}&\partial _{x^c}\Psi (x^c,\gamma ) \left[ A^c x^c+ \Pi ^c G(x^c+\Psi (x^c,\gamma ),\gamma )\right] \nonumber \\&\quad =A^s \Psi (x^c,\gamma )+\Pi ^s G(x^c+\Psi (x^c,\gamma ),\gamma ). \end{aligned}$$
(5.2)

Our goal is to obtain a Taylor expansion up to order 3 of the above reduced system. To that aim we shall first compute a Taylor expansion of \(\Pi ^c G(x^c+\Psi (x^c,\gamma ),\gamma ) \) and \( \Pi ^s G(x^c+\Psi (x^c,\gamma ),\gamma )\), respectively, up to order 3 and 2. To do so, first note that for \( \Vert w\Vert \) small enough and \(\gamma \) close to \(\gamma _0\) one has the series expansion

$$\begin{aligned} \tilde{F}(w,\gamma )=\frac{b-\mu }{\gamma \mu } \left( K\circ w\right) ''+B(w,w)+w(1-\mu )+\frac{\mu ^2}{b}\sum _{p=0}^{\infty }\frac{\gamma ^p\mu ^p w^{p+1}}{b^p}, \end{aligned}$$

and

$$\begin{aligned} \partial _w{\tilde{F}}(0,\gamma _0)w=\frac{b-\mu }{\gamma _0\mu } \left( K\circ w\right) ''+w(1-\mu )+\frac{\mu ^2}{b}w. \end{aligned}$$

As a consequence one has, for all w and \(|\gamma -\gamma _0|\) small enough,

$$\begin{aligned} G(w,\gamma )=\frac{b-\mu }{\mu }\frac{\gamma _0-\gamma }{\gamma _0\gamma } \left( K\circ w\right) ''+B(w,w)+\frac{\mu ^2}{b}\sum _{p=1}^{\infty }\frac{\gamma ^p\mu ^p w^{p+1}}{b^p}. \end{aligned}$$

Hence, this leads us to the following order 3 Taylor expansion

$$\begin{aligned} \begin{aligned} G(w,\gamma )=&\frac{b-\mu }{\gamma _0\mu }\frac{(2\gamma _0-\gamma )(\gamma _0-\gamma )}{\gamma _0^2} \left( K\circ w\right) ''+B(w,w)+\frac{\mu ^3\gamma _0}{b^2}w^2\\&+\,\frac{\mu ^3(\gamma -\gamma _0)}{b^2}w^2+ \frac{\mu ^4\gamma _0^2}{b^3}w^3 +O((|w|+|\gamma -\gamma _0|)^4). \end{aligned} \end{aligned}$$

Now choosing the following form for w

$$\begin{aligned} w= & {} x^c+\Psi (x^c,\gamma )=x_-e_{-n_0}+x_+ e_{n_0}+\sum _{n\ne \pm n_0}P_n(x^c,\gamma )\\&+\,O\left( \left( \Vert x^c\Vert +|\gamma -\gamma _0|\right) ^3\right) \text { in }H^2, \end{aligned}$$

yields

$$\begin{aligned} \begin{aligned} (K\circ w)''=&-\left( \left( \frac{n_0\pi }{L}\right) ^2 c_{-n_0}(K) x_- e_{-n_0} + \left( \frac{n_0\pi }{L}\right) ^2 c_{n_0}(K) x_+ e_{n_0}\right) \\&-\,\sum _{n\ne \pm n_0}\left( \frac{n\pi }{L}\right) ^2c_n(K)P_n(x^c,\gamma )e_n+O\left( \left( \Vert x^c\Vert +|\gamma -\gamma _0|\right) ^3\right) \text { in }H^0, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} B(w,w)=&\sum _{m,n\in {\mathbb {Z}}^2} P_n(x^c,\gamma )P_m(x^c,\gamma )B(e_n,e_m)\\ =&-\sum _{m,n} P_n(x^c,\gamma )P_m(x^c,\gamma )\left( \dfrac{\pi }{L}\right) ^2c_m(K)m(m+n)e_{m+n}\\&+\,O\left( \left( \Vert x^c\Vert +|\gamma -\gamma _0|\right) ^4\right) \text { in }H^0, \end{aligned} \end{aligned}$$

Now, we calculate those terms of B(ww) up to order 2, which are given by

$$\begin{aligned} \text {order 2 }{\left\{ \begin{array}{ll} -x_+^2\left( \dfrac{\pi }{L}\right) ^2c_{n_0}(K) 2n_0^2 e_{2n_0},&{} n=m=n_0; \\ -x_-^2\left( \dfrac{\pi }{L}\right) ^2c_{-n_0}(K) 2n_0^2 e_{-2n_0},&{} n=m=-n_0;\\ 0,&{}n=n_0,m=-n_0; \text { or } n=-n_0,m=n_0. \end{array}\right. } \end{aligned}$$

For further normal form computation, we list all possible situations of order 3 of \( \Pi ^c B(w,w) \), that the components along the vectors \( e_{n_0} \) and \( e_{-n_0} \). They reads as follows:

$$\begin{aligned} \text {order 3 }{\left\{ \begin{array}{ll} 0,&{} n=n_0,\;m=0; \\ -x_+P_{-2n_0}(x^c,\gamma )\left( \dfrac{\pi }{L}\right) ^2c_{-2n_0}(K) 2n_0^2 e_{-n_0},&{} n=n_0,\;m=-2n_0;\\ 0,&{} n=-n_0,\;m=0;\\ -x_-P_{2n_0}(x^c,\gamma )\left( \dfrac{\pi }{L}\right) ^2c_{2n_0}(K) 2n_0^2 e_{n_0},&{} n=-n_0,\;m=2n_0;\\ -x_+P_{0}(x^c,\gamma )\left( \dfrac{\pi }{L}\right) ^2c_{n_0}(K) n_0^2 e_{n_0},&{} n=0,\;m=n_0;\\ x_+P_{-2n_0}(x^c,\gamma )\left( \dfrac{\pi }{L}\right) ^2c_{n_0}(K) n_0^2 e_{-n_0},&{} n=-2n_0,\;m=n_0;\\ -x_-P_{0}(x^c,\gamma )\left( \dfrac{\pi }{L}\right) ^2c_{-n_0}(K) n_0^2 e_{-n_0},&{} n=0,\;m=-n_0;\\ x_-P_{2n_0}(x^c,\gamma )\left( \dfrac{\pi }{L}\right) ^2c_{-n_0}(K) n_0^2 e_{n_0},&{} n=2n_0,\;m=-n_0; \end{array}\right. } \end{aligned}$$

Finally, we compute the term \(\Pi ^c w^2 \) and \(\Pi ^c w^3\). To that aim, note that one has

$$\begin{aligned} w^2=&\left( x_- e_{-n_0} +x_+ e_{n_0}\; +\;\sum _{n\ne \pm n_0}P_n(x^c,\gamma )e_n\right) ^2\\ =\,&x_+^2 e_{2n_0}+2 x_+x_- e_{0}+x_-^2 e_{-2n_0}+(x_- e_{-n_0} +x_+ e_{n_0})\sum _{n\ne \pm n_0}P_n(x^c,\gamma )e_n\\&+\,O((\Vert x^c\Vert +|\gamma -\gamma _0|)^4). \end{aligned}$$

therefore

$$\begin{aligned} \Pi ^cw^2= & {} \left( x_+P_0(x^c,\gamma )+x_-P_{2n_0}(x^c,\gamma )\right) e_{n_0}\\&+\,\left( x_+P_{-2n_0}(x^c,\gamma )+x_-P_0(x^c,\gamma )\right) e_{-n_0}+O((\Vert x^c\Vert +|\gamma -\gamma _0|)^4). \end{aligned}$$

Next, one has

$$\begin{aligned} w^3=(x_- e_{-n_0} +x_+ e_{n_0})^3+O((\Vert x^c\Vert +|\gamma -\gamma _0|)^4), \end{aligned}$$

so that we get

$$\begin{aligned} \Pi ^cw^3=3x_+^2x_-e_{n_0}+3x_+x_-^2e_{-n_0}+O((\Vert x^c\Vert +|\gamma -\gamma _0|)^4). \end{aligned}$$

Coupling the above computations allows us to compute a Taylor expansion up to order 3 for the quantity \( \Pi ^c G(x^c+\Psi (x^c,\gamma ),\gamma )\) and more precisely we get

$$\begin{aligned}&\Pi ^c G(x^c+\Psi (x^c,\gamma ),\gamma )\nonumber \\&\quad =\frac{b-\mu }{\gamma _0\mu }\frac{(2\gamma _0-\gamma )(\gamma -\gamma _0)}{\gamma _0^2} \left( \frac{n_0\pi }{L}\right) ^2\left( c_{-n_0}(K) x_- e_{-n_0} + c_{n_0}(K) x_+ e_{n_0}\right) \nonumber \\&\qquad +\,\left( \dfrac{\pi }{L}\right) ^2\left( x_-P_{2n_0}(x^c,\gamma )c_{-n_0}(K) n_0^2\right. \nonumber \\&\qquad \left. -x_-P_{2n_0}(x^c,\gamma )c_{2n_0}(K) 2n_0^2-x_+P_{0}(x^c,\gamma )c_{n_0}(K) n_0^2\right) e_{n_0}\nonumber \\&\qquad +\,\left( \dfrac{\pi }{L}\right) ^2\left( x_+P_{-2n_0}(x^c,\gamma )c_{n_0}(K) n_0^2\right. \\&\qquad \left. -x_+P_{-2n_0}(x^c,\gamma )c_{-2n_0}(K) 2n_0^2-x_-P_{0}(x^c,\gamma )c_{-n_0}(K) n_0^2\right) e_{-n_0}\nonumber \\&\qquad +\frac{\mu ^3\gamma _0}{b^2}(x_+P_0(x^c,\gamma )+x_-P_{2n_0}(x^c,\gamma ))e_{n_0}\nonumber \\&\qquad +\frac{\mu ^3\gamma _0}{b^2}(x_+P_{-2n_0}(x^c,\gamma )+x_-P_0(x^c,\gamma ))e_{-n_0} \nonumber \\&\qquad +\,\frac{\mu ^4\gamma _0^2}{b^3}\left( 3x_+^2x_-e_{n_0}+3x_+x_-^2e_{-n_0}\right) +\,O((\Vert x^c\Vert +|\gamma -\gamma _0|)^4)\text { in }H^0 .\nonumber \end{aligned}$$
(5.3)

Similarly, we also obtain a Taylor expansion for the quantity \(\Pi ^s G(x^c+\Psi (x^c,\gamma ),\gamma )\) up to order 2 as follows:

$$\begin{aligned} \Pi ^s G(x^c+\Psi (x^c,\gamma ),\gamma )=\,&2\left( \dfrac{n_0\pi }{L}\right) ^2 \left( c_{n_0}(K) x_+^2e_{2n_0}+c_{-n_0}(K)x_-^2e_{-2n_0}\right) \\&+\,\frac{\mu ^3\gamma _0}{b^2}\left( x_+^2 e_{2n_0}+2 x_+x_- e_{0}+x_-^2 e_{-2n_0}\right) \\&+\,O((\Vert x^c\Vert +|\gamma -\gamma _0|)^3). \end{aligned}$$

We now plug the above Taylor expansion into (5.4) to identify the polynomials \(P_n\) needed to obtain a Taylor expansion up to order 3 of the reduced system.

First note that the left-hand side of (5.2) can be rewritten as

$$\begin{aligned} \begin{aligned}&\partial _{x^c}\Psi (x^c,\gamma ) \left[ A^c x^c+ \Pi ^c G(x^c+\Psi (x^c,\gamma ),\gamma )\right] \\&\quad = \partial _{x^c}\Psi (x^c,\gamma ) \left[ \lambda _{n_0}(\gamma _0)x_+e_{n_0}+\lambda _{-n_0}(\gamma _0)x_-e_{-n_0}+h.o.t.\ge 2\right] \\&\quad = \lambda _{n_0}(\gamma _0)x_+ \partial _{x^c}\Psi (x^c,\gamma ) e_{n_0}+ \lambda _{-n_0}(\gamma _0)x_- \partial _{x^c}\Psi (x^c,\gamma ) e_{-n_0}+h.o.t.\ge 3 \end{aligned} \end{aligned}$$
(5.4)

where \( h.o.t.\ge 2 \) (resp. 3) means those terms with order greater than 2 (resp. 3). And similarly, the right-hand side of (5.2) can be rewritten as

$$\begin{aligned} \begin{aligned}&A^s \Psi (x^c,\gamma )+\Pi ^s G(x^c+\Psi (x^c,\gamma ),\gamma )\\&\quad =\sum _{n\ne \pm n_0}\lambda _n(\gamma _0)P_n(x^c,\gamma )e_n-2\left( \dfrac{n_0\pi }{L}\right) ^2 \left( c_{n_0}(K) x_+^2e_{2n_0}+c_{-n_0}(K)x_-^2e_{-2n_0}\right) \\&\qquad +\,\frac{\mu ^3\gamma _0}{b^2}\left( x_+^2 e_{2n_0}+2 x_+x_- e_{0}+x_-^2 e_{-2n_0}\right) +h.o.t.\ge 3\\&\quad =\sum _{n\ne \pm n_0}\lambda _n(\gamma _0)P_n(x^c,\gamma )e_n+C_0x_+x_-e_0+C_{2n_0} x_+^2e_{2n_0} \\&\qquad +\,C_{-2n_0} x_-^2e_{-2n_0}+h.o.t.\ge 3, \end{aligned} \end{aligned}$$
(5.5)

wherein we have set

$$\begin{aligned} C_0= & {} 2\frac{\mu ^3\gamma _0}{b^2} ,\;C_{2n_0}=-2\left( \dfrac{n_0\pi }{L}\right) ^2 c_{n_0}(K)+\frac{\mu ^3\gamma _0}{b^2},\nonumber \\ C_{-2n_0}= & {} -2\left( \dfrac{n_0\pi }{L}\right) ^2c_{-n_0}(K)+\frac{\mu ^3\gamma _0}{b^2}. \end{aligned}$$
(5.6)

According to (5.3), we only need to compute those terms when \( n=0,\pm 2n_0 \). Next, since (5.4) and (5.5) are equal, identifying the terms of order 2 yields

$$\begin{aligned}&\lambda _{n_0}(\gamma _0) x_+ \frac{\partial }{\partial x_+}P_n(x^c,\gamma )+\lambda _{-n_0}(\gamma _0)x_- \frac{\partial }{\partial x_-} P_n(x^c,\gamma )\\&\quad =\lambda _n(\gamma _0)P_n(x^c,\gamma )+Q_n(x^c) \text { for }n=0,\pm 2n_0, \end{aligned}$$

where we have defined

$$\begin{aligned} Q_0(x^c)=C_0 x_+x_-,\;Q_{2n_0}(x^c)=C_{2n_0} x_+^2,\;Q_{-2n_0}(x^c)=C_{-2n_0}x_-^2. \end{aligned}$$

Recalling that \(P_n\) are homogeneous polynomials of degree 2 with respect to the three variables \(x_-\), \(x_+\) and \((\gamma -\gamma _0)\), obtains that

$$\begin{aligned} \begin{aligned} P_0(x^c,\gamma )&=-\frac{C_0}{\lambda _0(\gamma _0)}x_+x_-,\\ P_{2n_0}(x^c,\gamma )&=-\frac{C_{2n_0}}{\lambda _{2n_0}(\gamma _0)}x_+^2,\\ P_{-2n_0}(x^c,\gamma )&=-\frac{C_{-2n_0}}{\lambda _{-2n_0}(\gamma _0)}x_-^2, \end{aligned} \end{aligned}$$

where the constants \(C_0\), \(C_{\pm 2m_0}\) are defined in (5.6). Finally, substituting the above expression into the Taylor expansion of \(\Pi ^c G(x^c+\Psi (x^c,\gamma ),\gamma )\) yields the following reduced system up to order 3,

$$\begin{aligned} {\left\{ \begin{array}{ll} \dfrac{\hbox {d}x_+(t)}{\hbox {d}t}=\left[ i\omega +a(\gamma )\right] x_++x_- x_+^2 \beta +h.o.t\ge 4,\\ x_-(t)=\overline{x}_+(t),\\ \dfrac{\hbox {d} \gamma (t)}{\hbox {d}t}=0. \end{array}\right. } \end{aligned}$$

Here, we have set \(\lambda _{n_0}(\gamma _0)=i\omega \),

$$\begin{aligned} a(\gamma )=\left( \dfrac{n_0\pi }{L}\right) ^2 \dfrac{ b-\mu }{\gamma _0 \mu }c_{n_0}(K)\dfrac{(2\gamma _0-\gamma )(\gamma -\gamma _0)}{\gamma _0^2}, \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \beta =&\frac{3 \gamma _0^2 \mu ^4}{b^3}+\frac{2 \gamma _0 \mu ^3 \left( \pi ^2 b^2 n_0^2 c_{n_0}(K)-\gamma _0 \mu ^3 L^2\right) }{b^4 L^2 \lambda _0\left( \gamma _0\right) }\\&+\,\frac{\left( 2 \pi ^2 b^2 n_0^2 c_{n_0}(K)-\gamma _0 \mu ^3 L^2\right) \left( \pi ^2 b^2 n_0^2 \left( c_{-n_0}(K)-2 c_{2 n_0}(K)\right) +\gamma _0 \mu ^3 L^2\right) }{b^4 L^4 \lambda _{2 n_0}\left( \gamma _0\right) }. \end{aligned} \end{aligned}$$

The first equation in the above system turns out to be the Poincaré normal form. It allows us to study the stability of the bifurcated periodic solution. To that aim observe that

$$\begin{aligned} \mathrm {Re} (a (\gamma ))=\left( \frac{n_0\pi }{L}\right) ^2\varepsilon _0 \dfrac{(2\gamma _0-\gamma )(\gamma -\gamma _0)}{\gamma _0^2}, \end{aligned}$$

so that \(\mathrm {Re} (a (\gamma ))>0\) for \(\gamma >\gamma _0\) and negative for \(\gamma <\gamma _0\) but close to \(\gamma _0\). The stability of the bifurcating period orbit is fully by the sign of the real part of the \(\beta \). However, we are not able to conclude about this sign. To summarize the Hopf bifurcation at \(\gamma _0\) is:

  1. 1.

    supercritical if \(\mathrm{Re}\,\beta <0\), namely the origin is stable for \(\gamma <\gamma _0\) and unstable for \(\gamma >\gamma _0\). Moreover, when \(\gamma >\gamma _0\) the system has a stable limit cycle. Here, the circular limit cycle has a radius proportional to \(\sqrt{\gamma -\gamma _0}\).

  2. 2.

    subcritical if \(\mathrm{Re}\,\beta >0\), namely the origin is stable for \(\gamma <\gamma _0\) and unstable when \(\gamma >\gamma _0\). Moreover, when \(\gamma <\gamma _0\) the system has an unstable limit cycle, with a radius proportional to \(\sqrt{\gamma _0-\gamma }\).

1.2 Numerical Scheme

The numerical method used is based on upwind scheme. We refer to Engquist and Osher (1981), Leveque (2002) for more results about this subject. We briefly illustrate our numerical scheme in this section: the approximation of the convolution term is as follows:

$$\begin{aligned} (K\circ u(t,\cdot ))(x) =\int _{\left[ -L,L\right] } u(t,y)K(x-y)\hbox {d}y \approx \sum _{j}K(x-x_j)u(t,x_j)\Delta x. \end{aligned}$$

In addition, we define

$$\begin{aligned} l_i^n:=\sum _{j}K(x_i-x_j)u(t_n,x_j)\Delta x, \end{aligned}$$
(5.7)

for \( i=1,2,\ldots ,M,\ n=0,1,2,\ldots ,N \).

We use the numerical scheme as illustrated in Hillen et al. (2007) to deal with the nonlocal convection term and the scheme reads as follows:

$$\begin{aligned} \frac{u^{n+1}_i-u^n_i}{\Delta t}&=\varepsilon \frac{u_{i+1}^{n+1}-2u_i^{n+1}+u_{i-1}^{n+1}}{\Delta x^2}+ \frac{F_{i+\frac{1}{2}}^n-F_{i-\frac{1}{2}}^n}{\Delta x},\\\nonumber i&=1,2,\ldots ,M,\ n=0,1,2,\ldots ,N \end{aligned}$$
(5.8)

where

$$\begin{aligned} F_{i+\frac{1}{2}}^n=\left\{ \begin{array}{cc} g_{i+\frac{1}{2}}^n u_i^{n+1},&{}\text {if}\ g_{i+\frac{1}{2}}^n\ge 0\\ g_{i+\frac{1}{2}}^n u_{i+1}^{n+1},&{}\text {if}\ g_{i+\frac{1}{2}}^n< 0, \end{array}\right. \ i=0,1,2,\ldots ,M. \end{aligned}$$
(5.9)

with

$$\begin{aligned} g_{i+\frac{1}{2}}^n=\dfrac{l_{i+1}^n-l_i^n}{\Delta x},\ i=0,1,2,\ldots ,M. \end{aligned}$$

By the periodic boundary condition, one has \( g_{\frac{1}{2}}^n=g_{M+\frac{1}{2}}^n\) and \( u_0^n=u_M^n, u_1^n=u_{M+1}^n \), therefore,

$$\begin{aligned} F_{M+\frac{1}{2}}^n=F_{\frac{1}{2}}^n=\left\{ \begin{array}{cc} g_{\frac{1}{2}}^n u_0^{n+1},&{}\text {if}\ g_{\frac{1}{2}}^n\ge 0\\ g_{\frac{1}{2}}^n u_1^{n+1},&{}\text {if}\ g_{\frac{1}{2}}^n< 0. \end{array}\right. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducrot, A., Fu, X. & Magal, P. Turing and Turing–Hopf Bifurcations for a Reaction Diffusion Equation with Nonlocal Advection. J Nonlinear Sci 28, 1959–1997 (2018). https://doi.org/10.1007/s00332-018-9472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9472-z

Keywords

Mathematics Subject Classification

Navigation