Skip to main content
Log in

Dynamics of Axially Symmetric Perturbed Hamiltonians in 1:1:1 Resonance

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the dynamics of a family of perturbed three-degree-of-freedom Hamiltonian systems which are in 1:1:1 resonance. The perturbation consists of axially symmetric cubic and quartic arbitrary polynomials. Our analysis is performed by normalisation, reduction and KAM techniques. Firstly, the system is reduced by the axial symmetry, and then, periodic solutions and KAM 3-tori of the full system are determined from the relative equilibria. Next, the oscillator symmetry is extended by normalisation up to terms of degree 4 in rectangular coordinates; after truncation of higher orders and reduction to the orbit space, some relative equilibria are established and periodic solutions and KAM 3-tori of the original system are obtained. As a third step, the reduction in the two symmetries leads to a one-degree-of-freedom system that is completely analysed in the twice reduced space. All the relative equilibria together with the stability and parametric bifurcations are determined. Moreover, the invariant 2-tori (related to the critical points of the twice reduced space), some periodic solutions and the KAM 3-tori, all corresponding to the full system, are established. Additionally, the bifurcations of equilibria occurring in the twice reduced space are reconstructed as quasi-periodic bifurcations involving 2-tori and periodic solutions of the full system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arms, J.M., Cushman, R.H., Gotay, M.J.: A universal reduction procedure for Hamiltonian group actions. In: Ratiu, T. (ed.) The Geometry of Hamiltonian Systems, pp. 33–51. Springer, New York (1991)

    Chapter  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, Third Edition, Encyclopaedia of Mathematical Sciences, vol. 3. Dynamical Systems III. Springer, New York (2006)

    Google Scholar 

  • Breiter, S., Elipe, A., Wytrzyszczak, I.: Analytical investigation of the orbital structure close to the 1:1:1 resonance in spheroidal galaxies. Astron. Astrophys. 431(3), 1145–1155 (2005)

    Article  Google Scholar 

  • Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Motions in Families of Dynamical Systems. Order Amidst Chaos, Lecture Notes in Math, vol. 1645. Springer, New York (1996)

  • Broer, H.W., Hanßmann, H., Hoo, J.: The quasi-periodic Hamiltonian Hopf bifurcation. Nonlinearity 20(2), 417–460 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Caranicolas, N.D.: 1:1:1 resonant periodic orbits in 3-dimensional galactic-type Hamiltonians. Astron. Astrophys. 114(1), 360–366 (1982)

    MathSciNet  Google Scholar 

  • Caranicolas, N.D., Zotos, E.E.: Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits. Nonlinear Dyn. 69(4), 1795–1805 (2012)

    Article  MathSciNet  Google Scholar 

  • Cariñena, J.F., Ibort, A., Marmo, G., Morandi, G.: Geometry from Dynamics. Classical and Quantum. Springer, Dordrecht (2015)

    MATH  Google Scholar 

  • Churchill, R.C., Kummer, M., Rod, D.L.: On averaging, reduction, and symmetry in Hamiltonian systems. J. Differ. Equ. 49(3), 359–414 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Contopoulos, G., Barbanis, B.: Resonant systems with three degrees of freedom. Astron. Astrophys. 153(1), 44–54 (1985)

    MathSciNet  MATH  Google Scholar 

  • Cornea, O., Lupton, G., Oprea, J., Tanré, D.: Lusternik-Schnirelmann Category, Mathematical Surveys and Monographs, vol. 103. American Mathematical Society, Rhode Island (2003)

    Book  MATH  Google Scholar 

  • Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, New York (2007)

  • Cushman, R.H., Bates, L.M.: Global Aspects of Classical Integrable Systems, 2nd edn. Birkhäuser Verlag, Basel (2015)

    Book  MATH  Google Scholar 

  • Cushman, R.H., Ferrer, S., Hanßmann, H.: Singular reduction of axially symmetric perturbations of the isotropic harmonic oscillator. Nonlinearity 12(2), 389–410 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • David, D., Holm, D.D., Tratnik, M.V.: Hamiltonian chaos in nonlinear optical polarization dynamics. Phys. Rep. 187, 281–367 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • de Bustos, M.T., Guirao, J.L., Llibre, J., Vera, J.: New families of periodic orbits for a galactic potential. Chaos Solitons Fractals. 82, 97–102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • de Zeeuw, T.: Motion in the core of a triaxial potential. Mon. Not. R. Astron. Soc. 215, 731–760 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • de Zeeuw, T.: Dynamical models for axisymmetric and triaxial galaxies. In: de Zeeuw, T. (ed.) Structure and Dynamics of Elliptical Galaxies, vol. 127, pp. 271–290. Reidel, Dordrecht (1987). IAU Symp

  • de Zeeuw, T., Franx, M.: Structure and dynamics of elliptical galaxies. Annu. Rev. Astron. Astrophys. 29, 239–274 (1991)

    Article  Google Scholar 

  • de Zeeuw, T., Merritt, D.: Stellar orbits in a triaxial galaxy. I. Orbits in the plane of rotation. Astrophys. J. 267, 571–595 (1983)

    Article  MathSciNet  Google Scholar 

  • Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Deprit, A.: The Lissajous transformation I. Basics. Celest. Mech. 51(3), 201–225 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Deprit, A., Miller, B.R.: Normalization in the face of integrability. Ann. N. Y. Acad. Sci. 536, 101–126 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Efstathiou, K.: Metamorphoses of Hamiltonian Systems with Symmetries. Lecture Notes in Math, vol. 1865. Springer, New York (2005)

  • Efstathiou, K., Sadovskií, D.A.: Perturbations of the 1:1:1 resonance with tetrahedral symmetry: a three degree of freedom analogue of the two degree of freedom Hénon-Heiles Hamiltonian. Nonlinearity 17(2), 415–446 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Efstathiou, K., Sadovskií, D.A., Cushman, R.H.: Linear Hamiltonian Hopf bifurcation for point-group-invariant perturbations of the 1:1:1 resonance. Proc. R. Soc. Lond. A 459(2040), 2997–3019 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Efstathiou, K., Sadovskií, D.A., Zhilinskií, B.I.: Analysis of rotation-vibration relative equilibria on the example of a tetrahedral four atom molecule. SIAM J. Appl. Dyn. Syst. 3(3), 261–351 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Egea, J., Ferrer, S., van der Meer, J.-C.: Hamiltonian fourfold 1:1 resonance with two rotational symmetries. Regul. Chaot. Dyn. 12(6), 664–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Egea, J., Ferrer, S., van der Meer, J.-C.: Bifurcations of the Hamiltonian fourfold 1:1 resonance with toroidal symmetry. J. Nonlinear Sci. 21(6), 835–874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Elipe, A.: Extended Lissajous variables for oscillators in resonance. Math. Comput. Simul. 57(3–5), 217–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Farrelly, D., Uzer, T.: Normalization and the detection of integrability: the generalized van der Waals potential. Celest. Mech. Dynam. Astron. 61(1), 71–95 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Farrelly, D., Humpherys, J., Uzer, T.: Normalization of resonant Hamiltonians. In: Seimenis, J. (ed.) Hamiltonian Mechanics, pp. 237–244. Plenum Press, New York (1994)

    Chapter  Google Scholar 

  • Ferrer, S., Gárate, J.: On perturbed 3D elliptic oscillators: a case of critical inclination in galactic dynamics. In: Lacomba, E.A., Llibre, J. (eds.) New Trends for Hamiltonian Systems and Celestial Mechanics, Cocoyoc 1994, Advanced Series in Nonlinear Dynamics, vol. 8, pp. 179–197. World Scientific, Singapore (1996)

    Google Scholar 

  • Ferrer, S., Lara, M., Palacián, J.F., San Juan, J.F., Viartola, A., Yanguas, P.: The Hénon and Heiles problem in three dimensions. I. Periodic orbits near the origin. Int. J. Bifur. Chaos Appl. Sci. Eng. 8(6), 1199–1213 (1998)

  • Ferrer, S., Lara, M., Palacián, J.F., San Juan, J.F., Viartola, A., Yanguas, P.: The Hénon and Heiles problem in three dimensions. II. Relative equilibria and bifurcations in the reduced system. Int. J. Bifur. Chaos Appl. Sci. Eng. 8(6), 1215–1229 (1998)

  • Ferrer, S., Palacián, J.F., Yanguas, P.: Hamiltonian oscillators in \(1\)-\(1\)-\(1\) resonance: normalization and integrability. J. Nonlinear Sci. 10(2), 145–174 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrer, S., Hanßmann, H., Palacián, J.F., Yanguas, P.: On perturbed oscillators in \(1\)-\(1\)-\(1\) resonance: the case of axially symmetric cubic potentials. J. Geom. Phys. 40(3–4), 320–369 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Guirao, J.L.G., Llibre, J., Vera, J.A.: Periodic orbits of a perturbed 3-dimensional isotropic oscillator with axial symmetry. Nonlinear Dyn. 83, 839–848 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics, Interdisciplinary Applied Mathematics, vol. 1. Springer, New York (1990)

    Book  MATH  Google Scholar 

  • Haller, G.: Chaos Near Resonance, Applied Mathematical Sciences, vol. 138. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Haller, G., Wiggins, S.: Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems. Phys. D 90(4), 319–365 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Han, Y., Li, Y., Yi, Y.: Invariant tori in Hamiltonian systems with high order proper degeneracy. Ann. Henri Poincaré 10(8), 1419–1436 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Hanßmann, H.: Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples. Lecture Notes in Math, vol. 1893. Springer, New York (2007)

  • Hanßmann, H., van der Meer, J.-C.: On the Hamiltonian Hopf bifurcations in the 3D Hénon-Heiles family. J. Dyn. Differ. Equ. 14(3), 675–695 (2002)

    Article  MATH  Google Scholar 

  • Hanßmann, H., van der Meer, J.-C.: Algebraic methods for determining Hamiltonian Hopf bifurcations in three-degree-of-freedom systems. J. Dyn. Differ. Equ. 17(3), 453–474 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kummer, M.: On resonant classical Hamiltonians with \(n\) frequencies. J. Differ. Equ. 83(2), 220–243 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Lanchares, V., Palacián, J.F., Pascual, A.I., Salas, J.P., Yanguas, P.: Perturbed ion traps: a generalization of the three-dimensional Hénon-Heiles problem. Chaos 12(1), 87–99 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Laub, A.J., Meyer, K.R.: Canonical forms for symplectic and Hamiltonian matrices. Celes. Mech. 9(2), 213–238 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Lembarki, F.E., Llibre, J.: Periodic orbits for the generalized Yang-Mills Hamiltonian system in dimension 6. Nonlinear Dyn. 76(3), 1807–1819 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, Second Edition, Applied Mathematical Sciences, vol. 38. Springer, New York (1992)

    Book  MATH  Google Scholar 

  • Llibre, J., Vidal, C.: New periodic solutions in \(3\)-dimensional galactic-type Hamiltonian systems. Nonlinear Dyn. 78(2), 969–980 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Llibre, J., Pasca, D., Valls, C.: Periodic solutions of a galactic potential. Chaos Solitons Fractals 61, 38–43 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Markeev, A.P.: Libration Points in Celestial Mechanics and Space Dynamics. Nauka, Moscow (1978)

    Google Scholar 

  • Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5(1), 121–130 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, K.R., Palacián, J.F., Yanguas, P.: Invariant tori in the Lunar problem. Publ. Mat. EXTRA, 353–394 (2014). https://doi.org/10.5565/PUBLMAT_Extra14_19

  • Meyer, K.R., Palacián, J.F., Yanguas, P.: Singular reduction of high dimensional Hamiltonian systems (in preparation)

  • Meyer, K.R., Palacián, J.F., Yanguas, P.: Singular reduction of resonant Hamiltonians, to be published in Nonlinearity (2018)

  • Meyer, K.R.: Symmetries and integrals in mechanics. In: Peixoto, M.M. (ed.) Dynamical Systems, pp. 259–272. Academic Press, New York (1973)

    Chapter  Google Scholar 

  • Meyer, K.R., Schmidt, D.S.: Periodic orbits near \(L_4\) for mass ratios near the critical mass ratio of Routh. Celest. Mech. 4(1), 99–109 (1971)

    Article  MATH  Google Scholar 

  • Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  • Meyer, K.R., Palacián, J.F., Yanguas, P.: Geometric averaging of Hamiltonian systems: periodic solutions, stability, and KAM tori. SIAM J. Appl. Dyn. Syst. 10(3), 817–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Moser, J.: Regularization of Kepler’s problem and the averaging method on a manifold. Commun. Pure Appl. Math. XXII I(4), 609–636 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Palacián, J.F., Vidal, C., Vidarte, J., Yanguas, P.: Periodic solutions and KAM tori in a triaxial potential. SIAM. J. Appl. Dyn. Syst. 16(1), 159–187 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Reeb, G.: Sur certaines propriétés topologiques des trajectoires des systèmes dynamiques, Acad. R. Sci. Lett. et Beaux-Arts de Belgique. Cl. des Sci. Mém. in \(8^{\circ }\), Ser. 2, 27, 9 (1952)

  • Sanders, J.A.: Normal forms of \(3\) degree of freedom Hamiltonian systems at equilibrium in the resonant case. In: Calmet, J., Seiler, W.M., Tucker, R.W. (eds.) Global Integrability of Field Theories, pp. 335–346. Univ. Karlsruhe, Karlsruhe (2006)

    Google Scholar 

  • Schomerus, H.: Periodic orbits near bifurcations of codimension two: classical mechanics, semiclassics and Stokes transitions. J. Phys. A Math. Gen. 31(18), 4167–4196 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Sturmfels, B.: Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation. Springer, New York (1993)

    Book  MATH  Google Scholar 

  • van der Aa, E.: First-order resonances in three-degrees-of-freedom systems. Celest. Mech. 31(2), 163–191 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • van der Meer, J.-C.: The Hamiltonian Hopf Bifurcation. Lecture Notes in Math, vol. 1160. Springer, New York (1985)

  • Vidarte, J.: Averaging, Reduction and Reconstruction in Hamiltonian Systems and Applications to Problems of Celestial Mechanics. Ph.D. Thesis, Universidad del Bío-Bío (2017)

  • Weinstein, A.: Normal modes for nonlinear Hamiltonian systems. Inventiones math. 20, 47–57 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Weinstein, A.: Symplectic V-manifolds, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds. Commun. Pure Appl. Math. XXX(2), 265–271 (1977)

  • Weinstein, A.: Bifurcations and Hamilton’s principle. Math. Z. 159(3), 235–248 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Welker, T.: The Bifurcation Diagram of the Second Nontrivial Normal Form of an Axially Symmetric Perturbation of the Isotropic Harmonic Oscillator. Bachelor Thesis, University of Utrecht (2014)

  • Yanguas, P.: Integrability, Normalization and Symmetries of Hamiltonian Systems in \(1\)-\(1\)-\(1\) resonance. Ph.D. Thesis, Universidad Pública de Navarra (1998)

  • Yanguas, P., Palacián, J.F., Meyer, K.R., Dumas, H.S.: Periodic solutions in Hamiltonian systems, averaging, and the Lunar problem. SIAM J. Appl. Dyn. Syst. 7(2), 311–340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We appreciate the valuable remarks made by the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Palacián.

Additional information

Communicated by Tudor Stefan Ratiu.

The authors are partially supported by Projects MTM 2011-28227-C02-01 of the Ministry of Science and Innovation of Spain, MTM 2014-59433-C2-1-P of the Ministry of Economy and Competitiveness of Spain, and MTM 2017-88137-C2-1-P of the Ministry of Economy, Industry and Competitiveness of Spain. D. Carrasco is also partially supported by Project DIUBB 165708 3/R, Universidad del Bío-Bío, Chile and by FONDECYT Project 1181061, CONICYT (Chile). This paper is part of Jhon Vidarte’s Ph.D. Thesis in the Program “Doctorado en Matemática Aplicada, Universidad del Bío-Bío”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco, D., Palacián, J.F., Vidal, C. et al. Dynamics of Axially Symmetric Perturbed Hamiltonians in 1:1:1 Resonance. J Nonlinear Sci 28, 1293–1359 (2018). https://doi.org/10.1007/s00332-018-9449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9449-y

Keywords

Mathematics Subject Classification

Navigation