Skip to main content
Log in

Normality Condition in Elasticity

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Strong local minimizers with surfaces of gradient discontinuity appear in variational problems when the energy density function is not rank-one convex. In this paper we show that the stability of such surfaces is related to the stability outside the surface via a single jump relation that can be regarded as an interchange stability condition. Although this relation appears in the setting of equilibrium elasticity theory, it is remarkably similar to the well-known normality condition that plays a central role in classical plasticity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The choice of the orientation of the unit normal is unimportant as long as it is smooth. By convention, the unit normal points to the region labeled “\(+\)”.

  2. The choice of unit ball as a support of the test function \(\varvec{\phi }\) is arbitrary. \(\varvec{\phi }\) can be supported in any bounded domain of \(\mathbb { R}^{d}\), see Ball (1976).

  3. Projection onto the second component defines the same surface because of the symmetry of equations under the phase interchange \(\varvec{ F}_{+}\rightarrow \varvec{ F}_{-}\), \(\varvec{ F}_{-}\rightarrow \varvec{ F}_{+}\), \(\varvec{ n}\rightarrow -\varvec{ n}\).

  4. In fact, \(\varvec{ P}_\mathrm{tot}(t)=t\varvec{ P}_{+}+(1-t)\varvec{ P}_{-}\), as was shown in Ball et al. (2000).

References

  • Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4):337–403 (1976/77)

  • Ball, J.M.: Some open problems in elasticity. In: Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002)

  • Ball, J.M., Kirchheim, B., Kristensen, J.: Regularity of quasiconvex envelopes. Calc. Var. Part. Differ. Equ. 11(4), 333–359 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Ball, J.M., Marsden, J.E.: Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86(3), 251–277 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  • Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46(1), 102–118 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  • Erdmann, G.: Über die unstetige Lösungen in der Variationsrechnung. J. Reine Angew. Math. 82, 21–30 (1877)

    Google Scholar 

  • Eshelby, J.D.: Energy relations and energy momentum tensor in continuum mechanics. In: Kanninen, M., Adler, W., Rosenfeld, A., Jaffee, R. (eds.) Inelastic Behavior of Solids, pp. 77–114. McGraw-Hill, New York (1970)

    Google Scholar 

  • Fosdick, R., Volkmann, E.: Normality and convexity of the yield surface in nonlinear plasticity. Quart. Appl. Math. 51, 117–127 (1993)

    MATH  MathSciNet  Google Scholar 

  • Grabovsky, Y., Kucher, V.A., Truskinovsky, L.: Weak variations of lipschitz graphs and stability of phase boundaries. Contin. Mech. Thermodyn. (2010)

  • Grabovsky, Y., Truskinovsky, L.: Roughening instability of broken extremals. Arch. Ration. Mech. Anal. 200(1), 183–202 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Grabovsky, Y., Truskinovsky, L.: Marginal material stability. J. Nonlinear Sci. 23(5), 891–969 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Graves, L.M.: The weierstrass condition for multiple integral variation problems. Duke Math. J. 5(3), 656–660 (1939)

    Article  MathSciNet  Google Scholar 

  • Grinfeld, M.A.: Stability of heterogeneous equilibrium in systems containing solid elastic phases. Dokl. Akad. Nauk SSSR 265(4), 836–840 (1982)

    MathSciNet  Google Scholar 

  • Grinfeld, M.A.: Stability of interphase boundaries in solid elastic media. Prikl. Mat. Mekh. 51(4), 628–637 (1987)

    MathSciNet  Google Scholar 

  • Gurtin, M.E.: Two-phase deformations of elastic solids. Arch. Ration. Mech. Anal. 84(1), 1–29 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées, volume 33 of Mem. Acad. Sci. Paris. Imprimerie nationale (1908)

  • Hill, R.: Energy momentum tensors in elastostatics:some reflections on the general theory. J. Mech. Phys. Solids 34, 305–317 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115(4), 329–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Lubliner, J.: Plasticity Theory. Macmillan Publishing Company, New York (1990)

    MATH  Google Scholar 

  • McShane, E.J.: On the necessary condition of weierstrass in the multiple integral problem of the calculus of variations. Ann. Math. 32(3), 578–590 (1931)

    Article  MathSciNet  Google Scholar 

  • Morrey, J., Charles, B.: Multiple Integrals in the Calculus of Variations. Springer, New York Inc, New York (1966). Die Grundlehren der mathematischen Wissenschaften, Band 130

  • Pedregal, P.: Laminates and microstructure. Eur. J. Appl. Math. 4(6), 121–149 (1993)

    MATH  MathSciNet  Google Scholar 

  • Salman, O., Truskinovsky, L.: On the critical nature of plastic flow: one and two dimensional models. Int. J. Eng. Sci. 59, 219–254 (2012)

    Article  Google Scholar 

  • Šilhavý, M.: Maxwell’s relation for isotropic bodies. In: Mechanics of Material Forces, Volume 11 of Adv. Mech. Math., pp. 281–288. Springer, New York (2005)

  • Simpson, H.C., Spector, S.J.: On the positivity of the second variation in finite elasticity. Arch. Ration. Mech. Anal. 98(1), 1–30 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Simpson, H.C., Spector, S.J.: Some necessary conditions at an internal boundary for minimizers in finite elasticity. J. Elast. 26(3), 203–222 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Tartar, L.: Étude des oscillations dans les équations aux dérivées partielles non linéaires. In: Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983), pp. 384–412. Springer, Berlin (1984)

Download references

Acknowledgments

The authors are grateful to the anonymous referee for valuable comments and corrections. We also thank Bob Kohn for his suggestions. This material is based on work supported by the National Science Foundation under Grant 1008092 and the French ANR Grant EVOCRIT (2008–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Grabovsky.

Additional information

Communicated by Robert V. Kohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovsky, Y., Truskinovsky, L. Normality Condition in Elasticity. J Nonlinear Sci 24, 1125–1146 (2014). https://doi.org/10.1007/s00332-014-9213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9213-x

Keywords

Mathematics Subject Classification

Navigation