Skip to main content
Log in

The Geometry of Spontaneous Spiking in Neuronal Networks

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The mathematical theory of pattern formation in electrically coupled networks of excitable neurons forced by small noise is presented in this work. Using the Freidlin–Wentzell large-deviation theory for randomly perturbed dynamical systems and the elements of the algebraic graph theory, we identify and analyze the main regimes in the network dynamics in terms of the key control parameters: excitability, coupling strength, and network topology. The analysis reveals the geometry of spontaneous dynamics in electrically coupled network. Specifically, we show that the location of the minima of a certain continuous function on the surface of the unit n-cube encodes the most likely activity patterns generated by the network. By studying how the minima of this function evolve under the variation of the coupling strength, we describe the principal transformations in the network dynamics. The minimization problem is also used for the quantitative description of the main dynamical regimes and transitions between them. In particular, for the weak and strong coupling regimes, we present asymptotic formulas for the network activity rate as a function of the coupling strength and the degree of the network. The variational analysis is complemented by the stability analysis of the synchronous state in the strong coupling regime. The stability estimates reveal the contribution of the network connectivity and the properties of the cycle subspace associated with the graph of the network to its synchronization properties. This work is motivated by the experimental and modeling studies of the ensemble of neurons in the Locus Coeruleus, a nucleus in the brainstem involved in the regulation of cognitive performance and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Positive parameter b in the definition of D (cf. (4.12)) is used to exclude the possibility of exit from D through ∂D + D.

  2. Note that l i≠0,i∈[n], as long as v i is not an isolated node of G. In particular, if G is connected then \(l^{i}\neq0\;\forall i\in[n]\).

References

  • Alvarez, V., Chow, C., Van Bockstaele, E.J., Williams, J.T.: Frequency-dependent synchrony in locus coeruleus: role of electronic coupling. Proc. Natl. Acad. Sci. USA 99, 4032–4036 (2002)

    Article  Google Scholar 

  • Aston-Jones, G., Cohen, J.D.: An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005)

    Article  Google Scholar 

  • Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow–Fast Dynamical Systems: A Sample-Paths Approach. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Berridge, C.W., Waterhouse, B.D.: The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brains Res. Rev. 42, 33–84 (2003)

    Article  Google Scholar 

  • Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  • Bollobas, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184. Springer, New York (1998)

    Book  MATH  Google Scholar 

  • Brown, E., Moehlis, J., Holmes, P., Clayton, E., Rajkowski, J., Aston-Jones, G.: The influence of spike rate and stimulus duration on noradrenergic neurons. J. Comput. Neurosci. 17, 13–29 (2004)

    Article  Google Scholar 

  • Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  • Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92 (1997)

    MATH  Google Scholar 

  • Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004)

    Article  Google Scholar 

  • Coombes, S.: Neuronal networks with gap junctions: A study of piece-wise linear planar neuron models. SIAM J. Appl. Dyn. Syst. 7, 1101–1129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Day, M.V.: On the exponential exit law in the small parameter exit problem. Stochastics 8, 297–323 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23, 98 (1973)

    MathSciNet  Google Scholar 

  • Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  • Friedman, J.: A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems. Memoirs of the American Mathematical Society, vol. 195 (2008)

    Google Scholar 

  • Gao, J., Holmes, P.: On the dynamics of electrically-coupled neurons with inhibitory synapses. J. Comput. Neurosci. 22, 39–61 (2007)

    Article  MathSciNet  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  • Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Jost, J.: Dynamical networks. In: Feng, J., Jost, J., Qian, M. (eds.) Networks: From Biology to Theory. Springer, Berlin (2007)

    Google Scholar 

  • Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    Book  MATH  Google Scholar 

  • Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47(3), 556–572 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Berlin (1998)

    MATH  Google Scholar 

  • Lewis, T., Rinzel, J.: Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J. Comput. Neurosci. 14, 283–309 (2003)

    Article  Google Scholar 

  • Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 161–278 (1988)

    Article  MathSciNet  Google Scholar 

  • Margulis, G.: Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Probl. Pereda. Inf. 24(1), 51–60 (1988) (Russian). (English translation in Probl. Inf. Transm. 24(1), 39–46 (1988))

    MathSciNet  Google Scholar 

  • Medvedev, G.S.: Electrical coupling promotes fidelity of responses in the networks of model neurons. Neural Comput. 21(11), 3057–3078 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Medvedev, G.S.: Synchronization of coupled stochastic limit cycle oscillators. Phys. Lett. A 374, 1712–1720 (2010)

    Article  MATH  Google Scholar 

  • Medvedev, G.S.: Synchronization of coupled limit cycles. J. Nonlinear Sci. 21, 441–464 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  • Medvedev, G.S.: Stochastic stability of continuous time consensus protocols (2011b, submitted). arXiv:1007.1234

  • Medvedev, G.S., Kopell, N.: Synchronization and transient dynamics in the chains of electrically coupled FitzHugh-Nagumo oscillators. SIAM J. Appl. Math. 61, 1762–1801 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Medvedev, G.S., Zhuravytska, S.: Shaping bursting by electrical coupling and noise. Biol. Cybern. (2012, in press). doi:10.1007/s00422-012-0481-y

  • Rinzel, J., Ermentrout, G.B.: Analysis of neural excitability and oscillations. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling. MIT Press, Cambridge (1989)

    Google Scholar 

  • Sara, S.J.: The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev., Neurosci. 10, 211–223 (2009)

    Article  Google Scholar 

  • Sarnak, P.: What is an expander? Not. Am. Math. Soc. 51, 762–763 (2004)

    MathSciNet  MATH  Google Scholar 

  • Usher, M., Cohen, J.D., Servan-Schreiber, D., Rajkowski, J., Aston-Jones, G.: The role of locus coeruleus in the regulation of cognitive performance. Science 283, 549–554 (1999)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partly supported by the NSF Award DMS 1109367 (to GM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi S. Medvedev.

Additional information

Communicated by P. Newton.

Appendix: The Parameter Values Used in the Biophysical Model (2.1) and (2.2)

Appendix: The Parameter Values Used in the Biophysical Model (2.1) and (2.2)

To emphasize that the results of this study do not rely on any specific features of the LC neuron model, in our numerical experiments we used the Morris–Lecar model, a common Type I biophysical model of an excitable cell (Rinzel and Ermentrout 1989). This model is based on the Hodgkin–Huxley paradigm. The function on the right hand side of the voltage equation (2.1), I ion=I Ca+I K+I l, models the combined effect of the calcium and sodium currents, I Ca, the potassium current, I K, and a small leak current, I l,

The constants E Ca, E K, and E l stand for the reversal potentials and g Ca, g K, and g l denote the maximal conductances of the corresponding ionic currents. The activation of the calcium and potassium channels are modeled using the steady-state functions

$$m_\infty(v)=0.5 \biggl(1+\tanh \biggl(\frac{v-\nu_1}{\nu_2} \biggr) \biggr)\quad\mbox{and}\quad n_\infty(v)=0.5 \biggl(1+\tanh \biggl(\frac{v-\nu_3}{\nu_4} \biggr) \biggr),$$

and the voltage-dependent time constant

$$\tau(v)= \biggl(\cosh \biggl(\frac{v-\nu_3}{2 \nu_4} \biggr) \biggr)^{-1}.$$

The parameter values are summarized in the Table 1.

Table 1 Parameter values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, G.S., Zhuravytska, S. The Geometry of Spontaneous Spiking in Neuronal Networks. J Nonlinear Sci 22, 689–725 (2012). https://doi.org/10.1007/s00332-012-9125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-012-9125-6

Keywords

Mathematics Subject Classification

Navigation