Skip to main content
Log in

On Non-local Variational Problems with Lack of Compactness Related to Non-linear Optics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We give a simple proof of the existence of solutions of the dispersion management and diffraction management equations for a zero average dispersion, respectively, diffraction. These solutions are found as maximizers of non-linear and non-local variational problems which are invariant under a large non-compact group. Our proof of the existence of a maximizer is rather direct and avoids the use of Lions’ concentration compactness argument or Ekeland’s variational principle. The existence of diffraction managed solitons in the discrete case is shown under the weakest possible assumptions on the diffraction profile, and the existence of dispersion managed solitons in the continuous case is shown under very mild conditions on the dispersion profile, which cover all physically relevant cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ablowitz, M.J., Biondini, G.: Multiscale pulse dynamics in communication systems with strong dispersion management. Opt. Lett. 23, 1668–1670 (1998)

    Article  Google Scholar 

  • Ablowitz, M., Musslimani, Z.H.: Discrete diffraction managed spatial solitons. Phys. Rev. Lett. 87, 254102 (2001)

    Article  Google Scholar 

  • Ablowitz, M., Musslimani, Z.H.: Discrete vector spatial solitons in a nonlinear waveguide array. Phys. Rev. E 65, 056618 (2002)

    Article  MathSciNet  Google Scholar 

  • Ablowitz, M., Musslimani, Z.H.: Discrete spatial solitons in a diffraction managed nonlinear waveguide array: a unified approach. Physica D 184, 276–303 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Clarendon Press/Oxford University Press, New York (2000)

    MATH  Google Scholar 

  • Birman, M.S., Solomjak, M.Z.: Spectral Theory of Selfadjoint Operators in Hilbert Space. Reidel, Dordrecht (1987). Translated from the 1980 Russian original by S. Khrushchëv and V. Peller. Mathematics and its Applications (Soviet Series)

    Google Scholar 

  • Bourgain, J.: Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, vol. 46. AMS, Providence (1999)

    MATH  Google Scholar 

  • Cai, D., Bishop, A.R., Groenbech-Jensen, N.: Localized states in discrete nonlinear Schrödinger equations. Phys. Rev. Lett. 72, 591–595 (1994)

    Article  Google Scholar 

  • Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. AMS, Providence (2003)

    MATH  Google Scholar 

  • Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Chraplyvy, A.R., Gnauck, A.H., Tkach, R.W., Derosier, R.M.: 8×10 Gb/s transmission through 280 km of dispersion-managed fiber. IEEE Photonics Technol. Lett. 5, 1233–1235 (1993)

    Article  Google Scholar 

  • Chraplyvy, A.R., Gnauck, A.H., Tkach, R.W., Derosier, R.M., Giles, E.R., Nyman, B.M., Ferguson, G.A., Sulhoff, J.W., Zyskind, J.L.: One-third terabit/s transmission through 150 km of dispersion-managed fiber. IEEE Photonics Technol. Lett. 7(1), 98–100 (1995)

    Article  Google Scholar 

  • Christodoulides, D.N., Joseph, R.I.: Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)

    Article  Google Scholar 

  • Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: A refined global well-posedness result for Schrödinger equations with derivative. SIAM J. Math. Anal. 34, 64–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Davydov, A.S.: Theory of contraction of proteins under their excitation. J. Theor. Biol. 38, 559–569 (1973)

    Article  Google Scholar 

  • Eisenberg, H., Silverberg, Y., Morandotti, R., Boyd, A., Aitchison, J.: Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998)

    Article  Google Scholar 

  • Eisenberg, H., Silverberg, Y., Morandotti, R., Aitchison, J.: Diffraction management. Phys. Rev. Lett. 85, 1863–1866 (2000)

    Article  Google Scholar 

  • Ekeland, I.: Sur les problèmes variationnels. C. R. Acad. Sci. Paris Sér. A-B 275, A1057–A1059 (1972) (French)

    MathSciNet  Google Scholar 

  • Ekeland, I.: Remarques sur les problèmes variationnels. C. R. Acad. Sci. Paris Sér. A-B 276, A1347–A1348 (1973) (French)

    MathSciNet  Google Scholar 

  • Erdoğan, M.B., Hundertmark, D., Lee, Y.-R.: Exponential decay of dispersion managed solitons for vanishing average dispersion. Math. Res. Lett. 18(1), 11–24 (2011)

    MathSciNet  Google Scholar 

  • Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  • Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Foschi, D.: Maximizers for the Strichartz inequality. J. Eur. Math. Soc. 9, 739–774 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Gabitov, I., Turitsyn, S.K.: Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation. Opt. Lett. 21, 327–329 (1996a)

    Article  Google Scholar 

  • Gabitov, I., Turitsyn, S.K.: Breathing solitons in optical fiber links. JETP Lett. 63, 861 (1996b)

    Article  Google Scholar 

  • Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 3009–327 (1985)

    MathSciNet  Google Scholar 

  • Hundertmark, D., Lee, Y.-R.: Decay estimates and smoothness for solutions of the dispersion managed non-linear Schrödinger equation. Commun. Math. Phys. 286(3), 851–873 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Hundertmark, D., Lee, Y.-R.: Super-exponential decay of diffraction management solitons. Preprint. To appear in Commun. Math. Phys.

  • Hundertmark, D., Zharnitsky, V.: On sharp Strichartz inequalities for low dimensions. Int. Math. Res. Not. 2006, 34080 (2006). doi:10.1155/IMRN/2006/34080

    MathSciNet  Google Scholar 

  • Jabri, Y.: The Mountain Pass Theorem. Variants, Generalizations, and Some Applications. Encyclopedia of Mathematics and its Applications, vol. 95. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  • Kenig, C.E., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana Univ. Math. J. 40, 33–68 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar, S., Hasegawa, A.: Quasi-soliton propagation in dispersion-managed optical fibers. Opt. Lett. 22, 372–374 (1997)

    Article  Google Scholar 

  • Kunze, M.: On a variational problem with lack of compactness related to the Strichartz inequality. Calc. Var. Partial Differ. Equ. 19(3), 307–336 (2004)

    Article  MathSciNet  Google Scholar 

  • Kunze, M., Moeser, J., Zharnitsky, V.: Ground states for the higher-order dispersion managed NLS equation in the absence of average dispersion. J. Differ. Equ. 209(1), 77–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kurtzke, C.: Suppression of fiber nonlinearities by appropriate dispersion management. IEEE Photonics Technol. Lett. 5, 1250–1253 (1993)

    Article  Google Scholar 

  • Lakoba, T., Kaup, D.J.: Shape of the stationary pulse in the strong dispersion management regime. Electron. Lett. 34, 1124–1125 (1998)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Course of theoretical physics, 3rd edn. Mechanics, vol. 1. Pergamon Press, Oxford (1976)

    Google Scholar 

  • Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. AMS, Providence (2001)

    MATH  Google Scholar 

  • Lin, C., Kogelnik, H., Cohen, L.G.: Optical pulse equalization and low dispersion transmission in singlemode fibers in the 1.3–1.7 μm spectral region. Opt. Lett. 5, 476–478 (1980)

    Article  Google Scholar 

  • Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 and 2. Annales de l’institut Henri Poincaré (C) Analyse non linéaire 1(2), 109–145 (1984) and 1(4), 223–283

  • Lushnikov, P.M.: Oscillating tails of dispersion-managed soliton. J. Opt. Soc. Am. B 21, 1913–1918 (2004)

    Article  Google Scholar 

  • Malý, J., Swanson, D., Ziemer, W.P.: The co-area formula for Sobolev mappings. Trans. Am. Math. Soc. 355(2), 477–492 (2003)

    Article  MATH  Google Scholar 

  • Mamyshev, P.V., Mamysheva, N.A.: Pulseoverlapped dispersion-managed data transmission and intrachannel four-wave mixing. Opt. Lett. 24, 1454–1456 (1999)

    Article  Google Scholar 

  • Moeser, J.: Diffraction managed solitons: asymptotic validity and excitation thresholds. Nonlinearity 18, 2275–2297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Mollenauer, L.F., Grant, A., Liu, X., Wei, X., Xie, C., Kang, I.: Experimental test of dense wavelengthdivision multiplexing using novel, periodic-group-delaycomplemented dispersion compensation and dispersionmanaged solitons. Opt. Lett. 28, 2043–2045 (2003)

    Article  Google Scholar 

  • Mollenauer, L.F., Mamyshev, P.V., Gripp, J., Neubelt, M.J., Mamysheva, N., Grüner-Nielsen, L., Veng, T.: Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersionmanaged solitons. Opt. Lett. 25, 704–706 (1999)

    Article  Google Scholar 

  • Ozawa, T., Tsutsumi, Y.: Space-time estimates for null gauge forms and nonlinear Schrödinger equations. Differ. Integral Equ. 11, 201–222 (1998)

    MathSciNet  MATH  Google Scholar 

  • Panayotaros, P.: Breather solutions in the diffraction managed NLS equation. Physica D 206, 213–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  • Scott, A.C.: Davydov solitons in polypeptides. Philos. Trans. R. Soc. Lond. A 315(1985), 423–436 (1985)

    Article  Google Scholar 

  • Simon, B.: Trace Ideals and Their Applications, 2nd edn. Mathematical Surveys and Monographs, vol. 120. AMS, Providence (2005)

    MATH  Google Scholar 

  • Stanislavova, M.: Regularity of ground state solutions of DMNLS equations. J. Differ. Equ. 210(1), 87–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Stanislavova, M.: Diffraction managed solitons with zero mean diffraction. J. Dyn. Differ. Equ. 19(2), 295–307 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Strichartz, R.S.: The Way of Analysis, Revised edn. Jones & Bartlett, Boston (2000)

    Google Scholar 

  • Sukhorukov, A., Kivshar, Y., Eisenberg, E.H., Silberberg, Y.: Spatial optical solitons in waveguide arrays. IEEE J. Quantum Electron. 39, 31–50 (2003)

    Article  Google Scholar 

  • Sulem, C., Sulem, P.-L.: The Non-Linear Schrödinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences vol. 139. Springer, New York (1999)

    Google Scholar 

  • Trombettoni, A., Smerzi, A.: Discrete solitons and breathers with dilute Bose–Einstein condensates. Phys. Rev. Lett. 86, 2353–2356 (1998)

    Article  Google Scholar 

  • Turitsyn, S.K., Doran, N.J., Nijhof, J.H.B., Mezentsev, V.K., Schäfer, T., Forysiak, W.: In: Zakharov, V.E., Wabnitz, S. (eds.) Optical Solitons: Theoretical Challenges and Industrial Perspectives, p. 91. Springer, Berlin (1999)

    Google Scholar 

  • Turitsyn, S.K., Shapiro, E.G., Medvedev, S.B., Fedoruk, M.P., Mezentsev, V.K.: Physics and mathematics of dispersion-managed optical solitons. C. R. Phys., Acad. Sci./Éditions Scientifiques et médicales 4, 145–161 (2003)

    Google Scholar 

  • Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39(1), 51–67 (1986)

    Article  MATH  Google Scholar 

  • Weinstein, M.I.: Excitation thresholds for nonlinear localized modes on lattices. Nonlinearity 12, 673–691 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Zharnitsky, V., Grenier, E., Jones, C.K.R.T., Turitsyn, S.K.: Stabilizing effects of dispersion management. Physica D 152–153, 794–817 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Ran Lee.

Additional information

Communicated by P. Newton.

©2011 by the authors. Faithful reproduction of this article, in its entirety, by any means is permitted for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hundertmark, D., Lee, YR. On Non-local Variational Problems with Lack of Compactness Related to Non-linear Optics. J Nonlinear Sci 22, 1–38 (2012). https://doi.org/10.1007/s00332-011-9106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-011-9106-1

Keywords

Navigation