Skip to main content
Log in

Poincaré–Cosserat Equations for the Lighthill Three-dimensional Large Amplitude Elongated Body Theory: Application to Robotics

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this article, we describe a dynamic model of the three-dimensional eel swimming. This model is analytical and suited to the online control of eel-like robots. The proposed solution is based on the Large Amplitude Elongated Body Theory of Lighthill and a framework recently presented in Boyer et al. (IEEE Trans. Robot. 22:763–775, 2006) for the dynamic modeling of hyper-redundant robots. This framework was named “macro-continuous” since, at this macroscopic scale, the robot (or the animal) is considered as a Cosserat beam internally (and continuously) actuated. This article introduces new results in two directions. Firstly, it extends the Lighthill theory to the case of a self-propelled body swimming in three dimensions, while including a model of the internal control torque. Secondly, this generalization of the Lighthill model is achieved due to a new set of equations, which are also derived in this article. These equations generalize the Poincaré equations of a Cosserat beam to an open system containing a fluid stratified around the slender beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alamir, M., El-Rafei, M., Hafidi, G., Marchand, N., Porez, M., Boyer, F.: Feedback design for 3-D movement of an eel-like robot. In: Proceedings of IEEE Inter. Conf. on Robotics and Automation, Rome, Italy, pp. 256–261 (2007)

  • Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications è l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier XVI, 319–361 (1966)

    Article  Google Scholar 

  • Arnold, V.I.: Mathematical Methods in Classical Mechanics. Springer, Berlin (1988)

    Google Scholar 

  • Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  • Boyer, F., Primault, D.: Finite element of slender beams in finite transformations—a geometrically exact approach. Int. J. Numer. Methods Eng. 59, 669–702 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Boyer, F., Primault, D.: The Poincaré–Chetayev equations and flexible multibody systems. J. Appl. Math. Mech. 69, 925–942 (2005)

    Article  MathSciNet  Google Scholar 

  • Boyer, F., Porez, M., Khalil, W.: Macro-continuous computed torque algorithm for the three-dimensional eel-like robot. IEEE Trans. Robot. 22, 763–775 (2006)

    Article  Google Scholar 

  • Boyer, F., Porez, M., Leroyer, A., Visonneau, M.: Fast dynamics of an eel-like robot—comparisons with Navier–Stokes simulations. IEEE Trans. Robot. 24, 1274–1288 (2008)

    Article  Google Scholar 

  • Breder, C.M.: The locomotion of fishes. Zoologica, N.Y. 4, 159–256 (1926)

    Google Scholar 

  • Carling, J., Williams, T.L., Bowtell, G.: Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier–Stokes equations and Newton’s laws of motion. J. Exp. Biol. 201, 3243–3166 (1998)

    Google Scholar 

  • Cheng, J.-Y., Chahine, G.L.: Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure. Comput. Biochem. Physiol. 131, 51–60 (2001)

    Article  Google Scholar 

  • Colgate, J.E., Lynch, K.M.: Mechanics and control of swimming: a review. IEEE J. Ocean. Eng. 29, 660–673 (2004)

    Article  Google Scholar 

  • del Valle, G., Campos, I., Jiménez, J.L.: A Hamilton–Jacobi approach to the rocket problem. Eur. J. Phys. 17, 253–257 (1996)

    Article  Google Scholar 

  • Ebin, D.G., Marsden, J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Farnell, D.J.J., David, T., Barton, D.C.: Numerical model of self-propulsion in a fluid. J. R. Soc. Interface 2, 79–88 (2005)

    Article  Google Scholar 

  • Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Robot. Res. 2, 13–30 (1983)

    Article  Google Scholar 

  • Featherstone, R., Orin, D.: Robot dynamics: equation and algorithms. In: Proceedings of IEEE Int. Conf. on Robotics and Automation, San Francisco, USA, vol. 1, pp. 826–834 (2000)

  • Gray, J.: Studies in animal locomotion, I: the movement of fish with special reference to the eel. J. Exp. Biol. 10, 88–104 (1933)

    Google Scholar 

  • Gray, J.: Studies in animal locomotion, VI: the propulsive powers of the dolphin. J. Exp. Biol. 13, 192–199 (1936)

    Google Scholar 

  • Hill, S.J.: Large amplitude fish swimming. PhD thesis, University of Leeds (1998)

  • Hoerner, S.F.: Fluid Dynamics Drag. Hoerner Fluid Dynamics (1965)

  • Ijspeert, A.J., Crespi, A., Cabelguen, J.-M.: Simulation and robotics studies of salamander locomotion. Applying neurobiological principles to the control of locomotion in robots. Neuroinformatics 5, 171–196 (2005)

    Article  Google Scholar 

  • Kanso, E., Marsden, J.E., Rowley, C.W., Melli-Huber, J.: Locomotion of articulated bodies in a perfect planar fluid. J. Nonlinear Sci. 15(4), 255–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kelly, S.D., Murray, R.M.: Modeling efficient pisciform swimming for control. Int. J. Robust Nonlinear Control 10, 217–241 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Penton Science, London (2002)

    Google Scholar 

  • Lamb, H.: Hydrodynamics. Dover, New York (1932)

    MATH  Google Scholar 

  • Leroyer, A., Visonneau, M.: Numerical methods for RANSE simulations of a self-propelled fish-like body. J. Fluids Struct. 20, 975–991 (2005)

    Article  Google Scholar 

  • Lighthill, J.: Note on the swimming of slender fish. J. Fluid Mech. 9, 305–307 (1960)

    Article  MathSciNet  Google Scholar 

  • Lighthill, J.: Aquatic animal propulsion of high hydro-mechanical efficiency. J. Fluid Mech. 44, 265–301 (1970)

    Article  MATH  Google Scholar 

  • Lighthill, J.: Large-amplitude elongated body theory of fish locomotion. Proc. R. Soc. 179, 125–138 (1971)

    Article  Google Scholar 

  • Lighthill, J.: Mathematical Biofluiddynamics. SIAM, Philadelphia (1975)

    Book  MATH  Google Scholar 

  • Liu, Q., Kawachi, K.: A numerical study of undulatory swimming. J. Comput. Phys. 155, 223–247 (1999)

    Article  MATH  Google Scholar 

  • Luh, J.Y.S., Walker, M.W., Paul, R.C.P.: On-line computational scheme for mechanical manipulator. J. Dyn. Syst. Meas. Control 102, 69–76 (1980)

    Article  MathSciNet  Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  • McIsaac, K.A., Ostrowski, J.P.: A geometric approach to anguilliform locomotion modelling of an underwater eel robot. In: Proceedings of IEEE Int. Conf. on Robotics and Automation, Detroit, USA, vol. 4, pp. 2843–2848 (1999)

  • McMillen, T., Holmes, P.: An elastic rod model for anguilliform swimming. J. Math. Biol. 53, 843–886 (2006)

    Article  MathSciNet  Google Scholar 

  • Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, New York (1970)

    Google Scholar 

  • Melli, J.B., Rowley, C.W., Rufat, D.S.: Motion planning for an articulated body in a perfect fluid. SIAM J. Appl. Dyn. Syst. 5, 650–669 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Munk, M.M.: The aerodynamic forces on airship hulls. National Advisory Committee for Aeronautics, p. 184 (1924)

  • Ostrowski, J.P.: Computing reduced equations for robotic systems with constraints and symmetries. IEEE Trans. Robot. Autom. 15, 111–123 (1999)

    Article  MathSciNet  Google Scholar 

  • Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. C. R. Acad. Sci. Paris 132, 369–371 (1901)

    MATH  Google Scholar 

  • Reissner, E.: On a one-dimensional large displacement finite-strain theory. Stud. Appl. Math. 52, 87–95 (1973)

    MATH  Google Scholar 

  • Ringuette, M.J.: Vortex formation and drag on low aspect ratio, normal flat plates. PhD thesis, California Institute of Technology, Pasadena, CA (2004)

  • Simo, J.C.: A finite strain beam formulation: the three-dimensional dynamic problem, Part I: formulation and optimal parametrization. Comput. Methods Appl. Mech. Eng. 72, 267–304 (1985)

    Article  MathSciNet  Google Scholar 

  • Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model, part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    Article  MATH  Google Scholar 

  • Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions. A geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Susbielles, G., Bratu, C.: Vagues et Ouvrages Pétroliers en Mer. Editions Technip, Paris (1981)

    Google Scholar 

  • Taylor, G.I.: Analysis of the swimming of long narrow animals. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 214, 158–183 (1952)

    Article  MATH  Google Scholar 

  • Triantafyllou, M.S., Triantafyllou, G.S.: An efficient swimming machine. Sci. Am. 272, 64–70 (1995)

    Article  Google Scholar 

  • Wolfgang, M.J.: Hydrodynamics of flexible-body swimming motions. PhD thesis, Massachusetts Institute of Technology (1999)

  • Wu, T.Y.-T.: Swimming of a waving plate. J. Fluid Mech. 10, 321–355 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  • Yamada, H., Chigisaki, S., Mori, M., Takita, K., Ogami, K., Hirose, S.: Development of amphibious snake-like robot. ACM-R5. In: Proceedings of 36th Int. Symposium on Robotics, Japan (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Boyer.

Additional information

Communicated by Shelley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, F., Porez, M. & Leroyer, A. Poincaré–Cosserat Equations for the Lighthill Three-dimensional Large Amplitude Elongated Body Theory: Application to Robotics. J Nonlinear Sci 20, 47–79 (2010). https://doi.org/10.1007/s00332-009-9050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-009-9050-5

Keywords

Mathematics Subject Classification (2000)

Navigation