Skip to main content
Log in

Locomotion of Deformable Bodies in an Ideal Fluid: Newtonian versus Lagrangian Formalisms

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper is concerned with comparing Newtonian and Lagrangian methods in Mechanics for determining the governing equations of motion (usually called Euler–Lagrange equations) for a collection of deformable bodies immersed in an incompressible, inviscid fluid whose flow is irrotational. The bodies can modify their shapes under the action of inner forces and torques and are endowed with thrusters, which means that they can generate fluid jets by sucking and blowing out fluid through some localized parts of their boundaries. These capabilities may allow them to propel and steer themselves.

Our first contribution is to prove that under smoothness assumptions on the fluid-bodies interface, Newtonian and Lagrangian formalisms yield the same equations of motion. However, and rather surprisingly, this is no longer true for nonsmooth shaped bodies.

The second novelty brought in this paper is treating for the first time a broad spectrum of problems in which several bodies undergoing any kind of shape changes can be involved and to display the Euler–Lagrange equations under a form convenient to study locomotion.

These equations have been used to develop a Matlab toolbox (Biohydrodynamics Toolbox) that allows one to study animal locomotion in a fluid or merely the motion of submerged rigid solids. Examples of such simulations are given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in R n. J. Math. Pures Appl. (9) 73(6), 579–606 (1994)

    MathSciNet  MATH  Google Scholar 

  • Amrouche, C., Girault, V., Giroire, J.: Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: an approach in weighted Sobolev spaces. J. Math. Pures Appl. (9) 76(1), 55–81 (1997)

    MathSciNet  MATH  Google Scholar 

  • Arnold, V.: Les Méthodes Mathématiques de la Mécanique Classique. Éditions Mir, Moscow (1976)

    MATH  Google Scholar 

  • Brezis, H.: Analyse Fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise (Collection of Applied Mathematics for the Master’s Degree). Masson, Paris (1983)

    MATH  Google Scholar 

  • Carling, J., Williams, T., Bowtell, G.: Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier–Stokes equations and Newton’s laws of motion. J. Exp. Biol. 201, 3143–3166 (1998)

    Google Scholar 

  • Childress, S.: Mechanics of Swimming and Flying. Cambridge Studies in Mathematical Biology, vol. 2. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  • do Carmo, M.-P.: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  • Galdi, G.P.: On the steady self-propelled motion of a body in a viscous incompressible fluid. Arch. Ration. Mech. Anal. 148(1), 53–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Galper, A., Miloh, T.: Dynamic equations of motion for a rigid or deformable body in an arbitrary non-uniform potential flow field. J. Fluid Mech. 295, 91–120 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Germain, P.: Mécanique des Milieux Continus. Masson, Paris (1962)

    Google Scholar 

  • Germain, P., Muller, P.: Introduction à la Mécanique des Milieux Continus. Masson, Paris (1980)

    MATH  Google Scholar 

  • Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  • Henrot, A., Pierre, M.: Variation et Optimisation de Formes: Une Analyse Géométrique. Mathématiques et Applications, vol. 048. Springer, Berlin (2005)

    MATH  Google Scholar 

  • Holmes, P., Jenkins, J., Leonard, N.E.: Dynamics of the Kirchhoff equations. I. Coincident centers of gravity and buoyancy. Physica D 118(3–4), 311–342 (1998)

    Article  MathSciNet  Google Scholar 

  • Houot, J., Munnier, A.: On the motion and collisions of rigid bodies in an ideal fluid. Asymptot. Anal. 56(3–4), 125–158 (2008)

    MathSciNet  MATH  Google Scholar 

  • Kanso, E., Marsden, J.E., Rowley, C.W., Melli-Huber, J.B.: Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Sci. 15(4), 255–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kelly, S.D., Murray, R.M.: Modelling efficient pisciform swimming for control. Int. J. Robust Nonlinear Control 10(4), 217–241 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov, V.V., Onishchenko, D.A.: Motion of a body with undeformable shell and variable mass geometry in an unbounded perfect fluid. J. Dyn. Differ. Equ. 15(2–3), 553–570 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Lamb, H.: Hydrodynamics, 6th edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  • Leonard, N.E., Marsden, J.E.: Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry. Physica D 105(1–3), 130–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Lighthill, J.: Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics, Philadelphia (1975)

    MATH  Google Scholar 

  • Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Google Scholar 

  • Liu, H., Kawachi, K.: A numerical study of undulatory swimming. J. Comput. Phys. 155(2), 223–247 (1999)

    Article  MATH  Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Texts in Applied Mathematics, vol. 17. Springer, New York (1999)

    MATH  Google Scholar 

  • Mason, R., Burdick, J.: Propulsion and control of deformable bodies in an ideal fluid. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation (1999)

  • Melli, J.B., Rowley, C.W., Rufat, D.S.: Motion planning for an articulated body in a perfect fluid. SIAM J. Appl. Dyn. Syst. (2006)

  • Moubachir, M., Zolésio, J.-P.: Moving Shape Analysis and Control. Pure and Applied Mathematics (Boca Raton), vol. 277. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  • Munnier, A.: On the self-displacement of deformable bodies in a potential fluid flow. Math. Models Methods Appl. Sci. 18(11), 1945–1981 (2008)

    Article  MathSciNet  Google Scholar 

  • Patrick, G.W.: Stability by KAM confinement of certain wild, nongeneric relative equilibria of underwater vehicles with coincident centers of mass and buoyancy. SIAM J. Appl. Dyn. Syst. 2(1), 36–52 (2003) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • San Martin, J., Scheid, J.F., Takahashi, T., Tucsnak, M.: An initial and boundary problem modeling fish-like swimming. Arch. Ration. Mech. Anal. (2008)

  • Sparenberg, J.A.: Survey of the mathematical theory of fish locomotion. J. Eng. Math. 44(4), 395–448 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Triantafyllou, M.S., Triantafyllou, G.S., Yue, D.K.P.: Hydrodynamics of fishlike swimming. In: Annual Review of Fluid Mechanics. Annu. Rev. Fluid Mech., vol. 32, pp. 33–53. Annual Reviews, Palo Alto, CA (2000)

  • Valasek, M., Stejskal, V.: The complete equivalence of Newton–Euler equations of motion and Lagrange’s equations of mixed type. Acta Tech. 31, 607–623 (1986)

    Google Scholar 

  • Wu, T.Y.: Mathematical biofluiddynamics and mechanophysiology of fish locomotion. Math. Methods Appl. Sci. 24(17–18), 1541–1564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, Q., Wolfgang, M.J., Yue, D.K.P., Triantafyllou, M.S.: Three-dimensional flow structures and vorticity control in fish-like swimming. J. Fluid Mech. 468, 1–28 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Munnier.

Additional information

Communicated by: E. Kanso.

INRIA Lorraine, Project CORIDA. Author partially supported by ECOS C07-E05.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munnier, A. Locomotion of Deformable Bodies in an Ideal Fluid: Newtonian versus Lagrangian Formalisms. J Nonlinear Sci 19, 665 (2009). https://doi.org/10.1007/s00332-009-9047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-009-9047-0

Keywords

Mathematics Subject Classification (2000)

Navigation