Skip to main content

Advertisement

Log in

MRI features of histologic subtypes of hepatocellular carcinoma: correlation with histologic, genetic, and molecular biologic classification

  • Hepatobiliary-Pancreas
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression. Advancements in imaging techniques have allowed imaging diagnosis to become a critical part of managing HCC in the clinical setting, even without pathologic diagnosis. With the identification of many HCC subtypes, there is increasing correlative evidence between imaging phenotypes and histologic, molecular, and genetic characteristics of various HCC subtypes. In this review, current knowledge of histologic heterogeneity of HCC correlated to features on gadolinium-enhanced dynamic liver MRI will be discussed. In addition, HCC subtype classification according to transcriptomic profiles will be outlined with descriptions of histologic, genetic, and molecular characteristics of some relatively well-established morphologic subtypes, namely the low proliferation class (steatohepatitic HCC and CTNNB1-mutated HCC) and the high proliferation class (macrotrabecular-massive HCC (MTM-HCC), scirrhous HCC, and CK19-positive HCC). Characteristics of sarcomatoid HCC and fibrolamellar HCC will also be discussed. Further research on radiological characteristics of HCC subtypes may ultimately enable non-invasive diagnosis and serve as a biomarker in predicting prognosis, molecular characteristics, and therapeutic response. In the era of precision medicine, a multidisciplinary effort to develop an integrated radiologic and clinical diagnostic system of various HCC subtypes is necessary.

Key Points

HCC is a heterogeneous group of tumors in terms of histology, genetic aberration, and protein expression, which can be divided into many subtypes according to transcriptome profiles.

There is increasing evidence of a correlation between imaging phenotypes and histologic, genetic, and molecular biologic characteristics of various HCC subtypes.

Imaging characteristics may ultimately enable non-invasive diagnosis and subtype characterization, serving as a biomarker for predicting prognosis, molecular characteristics, and therapeutic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

AFP:

Alpha-fetoprotein

AP:

Arterial phase

CK:

Cytokeratin

CNR:

Contrast-to-noise ratio

CTNNB1:

Catenin beta 1

DN:

Dysplastic nodules

EMT:

Epithelial-to-mesenchymal transition

EpCAM:

Epithelial cell adhesion molecules

FGF19:

Fibroblast growth factor 19

GA:

Gadoxetic acid

HBP:

Hepatobiliary phase

HepPar-1:

Hepatocyte Paraffin-1

HNF4α:

Hepatocyte nuclear factor 4α

MTM-HCC:

Macrotrabecular-massive HCC

N/C ratio:

Nuclear-to-cytoplasmic ratio

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

OATP1B3:

Organic anion transporting polypeptide 1B3

PVP:

Portal venous phase

SI:

Signal intensity

TP53:

Tumor protein p53

References

  1. World Health Organization. Liver Factsheet. Globocan. (2020). Available via https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf. Accessed 4 May 2020

  2. Llovet JM, Bustamante J, Castells A et al (1999) Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology 29:62–67

    Article  CAS  PubMed  Google Scholar 

  3. American College of Radiology. Liver Imaging Reporting and Data System. Available via https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LIRADS. Accessed 4 May 2020

  4. Heimbach JK, Kulik LM, Finn RS et al (2018) AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67:358–380

    Article  PubMed  Google Scholar 

  5. European Association for the Study of the Liver (2018) EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 69:182–236

    Article  Google Scholar 

  6. Calderaro J, Ziol M, Paradis V, Zucman-Rossi J (2019) Molecular and histological correlations in liver cancer. J Hepatol 71:616–630

    Article  CAS  PubMed  Google Scholar 

  7. Llovet JM, Kelley RK, Augusto V et al (2021) Hepatocellular carcinoma (Primer). Nature Reviews: Disease Primers 7

  8. Calderaro J, Couchy G, Imbeaud S et al (2017) Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol 67:727–738

    Article  CAS  PubMed  Google Scholar 

  9. Stigliano R, Marelli L, Yu D, Davies N, Patch D, Burroughs A (2007) Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome?: Seeding risk for percutaneous approach of HCC. Cancer Treat Rev 33:437–447

    Article  CAS  PubMed  Google Scholar 

  10. Park YN, Kim M-J (2011) Hepatocarcinogenesis: imaging-pathologic correlation. Abdom Imaging 36:232–243

    Article  PubMed  Google Scholar 

  11. Jiang K, Al-Diffalha S, Centeno B (2018) Primary Liver Cancers—Part 1: Histopathology, Differential Diagnoses, and Risk Stratification. Cancer Control 25:1073274817744625

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yoneda N, Matsui O, Kobayashi S et al (2019) Current status of imaging biomarkers predicting the biological nature of hepatocellular carcinoma. Jpn J Radiol 37:191–208

    Article  CAS  PubMed  Google Scholar 

  13. McGlynn KA, London WT (2005) Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol 19:3–23

    Article  PubMed  Google Scholar 

  14. Choi J-Y, Lee J-M, Sirlin CB (2014) CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology 272:635–654

    Article  PubMed  Google Scholar 

  15. Coleman WB (2003) Mechanisms of human hepatocarcinogenesis. Curr Mol Med 3:573–588

    Article  CAS  PubMed  Google Scholar 

  16. Wahid B, Ali A, Rafique S, Idrees M (2017, 2017) New insights into the epigenetics of hepatocellular carcinoma. Biomed Res Int 2017:1609575

  17. Wanless IR, Party IW (1995) Terminology of nodular hepatocellular lesions. Hepatology 22:983–993

    Article  Google Scholar 

  18. Roskams T, Kojiro M (2010) Pathology of early hepatocellular carcinoma: conventional and molecular diagnosis. Semin Liver Dis, pp:017–025

  19. International Consensus Group for Hepatocellular Neoplasia (2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49:658–664

    Article  Google Scholar 

  20. Park YN (2011) Update on precursor and early lesions of hepatocellular carcinomas. Arch Pathol Lab Med 135:704–715

    Article  PubMed  Google Scholar 

  21. Stevens WR, Gulino SP, Batts KP, Stephens DH, Johnson CD (1996) Mosaic pattern of hepatocellular carcinoma: histologic basis for a characteristic CT appearance. J Comput Assist Tomogr 20:337–342

    Article  CAS  PubMed  Google Scholar 

  22. Kojiro M (2005) Histopathology of liver cancers. Best Pract Res Clin Gastroenterol 19:39–62

    Article  PubMed  Google Scholar 

  23. Park YN, Yang C-P, Fernandez GJ, Cubukcu O, Thung SN, Theise ND (1998) Neoangiogenesis and sinusoidal “capillarization” in dysplastic nodules of the liver. Am J Surg Pathol 22:656–662

    Article  CAS  PubMed  Google Scholar 

  24. Sano K, Ichikawa T, Motosugi U et al (2011) Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid–enhanced MR imaging. Radiology 261:834–844

    Article  PubMed  Google Scholar 

  25. Ueda K, Matsui O, Kawamori Y et al (1998) Hypervascular hepatocellular carcinoma: evaluation of hemodynamics with dynamic CT during hepatic arteriography. Radiology 206:161–166

    Article  CAS  PubMed  Google Scholar 

  26. Kitao A, Zen Y, Matsui O, Gabata T, Nakanuma Y (2009) Hepatocarcinogenesis: multistep changes of drainage vessels at CT during arterial portography and hepatic arteriography—radiologic-pathologic correlation. Radiology 252:605–614

    Article  PubMed  Google Scholar 

  27. Torbenson M, Ng I, Park YN, Roncalli M, Sakamoto M (2019) Hepatocellular Carcinoma WHO Classification of Tumours, 5th edn. Digestive System Tumours by WHO Classification of Tumours Editorial Board. International Agency for Research on Cancer, Lyon, pp 229–239

    Google Scholar 

  28. Tan PS, Nakagawa S, Goossens N et al (2016) Clinicopathological indices to predict hepatocellular carcinoma molecular classification. Liver Int 36:108–118

    Article  CAS  PubMed  Google Scholar 

  29. Ziol M, Poté N, Amaddeo G et al (2018) Macrotrabecular-massive hepatocellular carcinoma: A distinctive histological subtype with clinical relevance. Hepatology 68:103–112

    Article  PubMed  Google Scholar 

  30. Okabe H, Yoshizumi T, Y-i Y et al (2018) Histological architectural classification determines recurrence pattern and prognosis after curative hepatectomy in patients with hepatocellular carcinoma. PLoS One 13:e0203856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Goodman ZD (2007) Neoplasms of the liver. Modern Pathology 20:S49–S60

    Article  PubMed  Google Scholar 

  32. Edmondson HA, Steiner PE (1954) Primary carcinoma of the liver. A study of 100 cases among 48,900 necropsies. Cancer 7:462–503

    Article  CAS  PubMed  Google Scholar 

  33. Audard V, Grimber G, Elie C et al (2007) Cholestasis is a marker for hepatocellular carcinomas displaying β-catenin mutations. J Pathol Transl Med 212:345–352

    CAS  Google Scholar 

  34. Zucman-Rossi J, Villanueva A, Nault J-C, Llovet JM (2015) Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149:1226-1239. e1224

  35. Rebouissou S, Nault J-C (2020) Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol 72:215–229

    Article  CAS  PubMed  Google Scholar 

  36. Boyault S, Rickman DS, De Reyniès A et al (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45:42–52

    Article  CAS  PubMed  Google Scholar 

  37. Hoshida Y, Nijman SM, Kobayashi M et al (2009) Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69:7385–7392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sia D, Jiao Y, Martinez-Quetglas I et al (2017) Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153:812–826

    Article  CAS  PubMed  Google Scholar 

  39. S-s K, Choi J-Y, Rhee H (2019) A comprehensive review of hepatocellular carcinoma enhancement patterns in MRI: emphasis on gadoxetate-enhanced imaging. J Korean Soc Radiol 80:374–393

    Article  Google Scholar 

  40. Chang KJ, Kamel IR, Macura KJ, Bluemke DA (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics 28:1983–1998

    Article  PubMed  Google Scholar 

  41. Park SH (2020) Liver magnetic resonance imaging for hepatocellular carcinoma surveillance. J Liver Cancer 20:25–31

  42. Zech CJ, Ba-Ssalamah A, Berg T et al (2020) Consensus report from the 8th international forum for liver magnetic resonance imaging. Eur Radiol 30:370–382

  43. Xiong H, Zeng Y-L (2016) Standard-b-value versus low-b-value diffusion-weighted Imaging in hepatic lesion discrimination: a meta-analysis. J Comput Assist Tomogr 40:498–504

  44. Bartolozzi C, Battaglia V, Bozzi E (2009) HCC diagnosis with liver-specific MRI–close to histopathology. Dig Dis 27:125–130

    Article  PubMed  Google Scholar 

  45. Vandecaveye V, De Keyzer F, Verslype C et al (2009) Diffusion-weighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol 19:2456–2466

    Article  PubMed  Google Scholar 

  46. Choi J-Y, Lee J-M, Sirlin CB (2014) CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology 273:30–50

    Article  PubMed  Google Scholar 

  47. Matsui O, Kobayashi S, Sanada J et al (2011) Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis. Abdom Imaging 36:264–272

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kadoya M, Matsui O, Takashima T, Nonomura A (1992) Hepatocellular carcinoma: correlation of MR imaging and histopathologic findings. Radiology 183:819–825

    Article  CAS  PubMed  Google Scholar 

  49. Ishizaki M, Ashida K, Higashi T et al (2001) The formation of capsule and septum in human hepatocellular carcinoma. Virchows Arch 438:574–580

    Article  CAS  PubMed  Google Scholar 

  50. Choi J-Y, Kim M-J, Park YN et al (2011) Gadoxetate disodium–enhanced hepatobiliary phase MRI of hepatocellular carcinoma: correlation with histological characteristics. AJR Am J Roentgenol 197:399–405

    Article  PubMed  Google Scholar 

  51. An C, Rhee H, Han K et al (2017) Added value of smooth hypointense rim in the hepatobiliary phase of gadoxetic acid-enhanced MRI in identifying tumour capsule and diagnosing hepatocellular carcinoma. Eur Radiol 27:2610–2618

    Article  PubMed  Google Scholar 

  52. Van Beers BE, Pastor CM, Hussain HK (2012) Primovist, Eovist: what to expect? J Hepatol 57:421–429

    Article  PubMed  Google Scholar 

  53. Paisant A, Vilgrain V, Riou J et al (2020) Comparison of extracellular and hepatobiliary MR contrast agents for the diagnosis of small HCCs. J Hepatol 72:937–945

    Article  CAS  PubMed  Google Scholar 

  54. Chen L, Zhang L, Bao J et al (2013) Comparison of MRI with liver-specific contrast agents and multidetector row CT for the detection of hepatocellular carcinoma: a meta-analysis of 15 direct comparative studies. Gut 62:1520–1521

    Article  PubMed  Google Scholar 

  55. Wu L-M, Xu J-R, Gu H-Y et al (2013) Is liver-specific gadoxetic acid-enhanced magnetic resonance imaging a reliable tool for detection of hepatocellular carcinoma in patients with chronic liver disease? Dig Dis Sci 58:3313–3325

  56. Kierans AS, Kang SK, Rosenkrantz AB (2016) The diagnostic performance of dynamic contrast-enhanced MR imaging for detection of small hepatocellular carcinoma measuring up to 2 cm: a meta-analysis. Radiology 278:82–94

    Article  PubMed  Google Scholar 

  57. Ahn SS, Kim M-J, Lim JS, Hong H-S, Chung YE, Choi J-Y (2010) Added value of gadoxetic acid–enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology 255:459–466

    Article  PubMed  Google Scholar 

  58. Marrero JA, Kulik LM, Sirlin CB et al (2018) Diagnosis, staging, and management of hepatocellular c arcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 68:723–750

    Article  PubMed  Google Scholar 

  59. Salomao M, Remotti H, Vaughan R, Siegel AB, Lefkowitch JH, Moreira RK (2012) The steatohepatitic variant of hepatocellular carcinoma and its association with underlying steatohepatitis. Hum Pathol 43:737–746

    Article  PubMed  Google Scholar 

  60. Olofson AM, Gonzalo DH, Chang M, Liu X (2018) Steatohepatitic variant of hepatocellular carcinoma: a focused review. Gastroenterology Res 11:391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salomao M, Woojin MY, Brown RS Jr, Emond JC, Lefkowitch JH (2010) Steatohepatitic hepatocellular carcinoma (SH-HCC): a distinctive histological variant of HCC in hepatitis C virus-related cirrhosis with associated NAFLD/NASH. Am J Surg Pathol 34:1630–1636

    Article  PubMed  Google Scholar 

  62. Yeh MM, Liu Y, Torbenson M (2015) Steatohepatitic variant of hepatocellular carcinoma in the absence of metabolic syndrome or background steatosis: a clinical, pathological, and genetic study. Hum Pathol 46:1769–1775

    Article  PubMed  Google Scholar 

  63. Basaran C, Karcaaltincaba M, Akata D et al (2005) Fat-containing lesions of the liver: cross-sectional imaging findings with emphasis on MRI. AJR Am J Roentgenol 184:1103–1110

    Article  PubMed  Google Scholar 

  64. Shibahara J, Ando S, Sakamoto Y, Kokudo N, Fukayama M (2014) Hepatocellular carcinoma with steatohepatitic features: a clinicopathological study of Japanese patients. Histopathology 64:951–962

    Article  PubMed  Google Scholar 

  65. Monga SP (2015) β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 148:1294–1310

    Article  CAS  PubMed  Google Scholar 

  66. Kitao A, Matsui O, Yoneda N et al (2015) Hepatocellular carcinoma with β-catenin mutation: imaging and pathologic characteristics. Radiology 275:708–717

    Article  PubMed  Google Scholar 

  67. Kitao A, Matsui O, Yoneda N et al (2018) Gadoxetic acid-enhanced magnetic resonance imaging reflects co-activation of β-catenin and hepatocyte nuclear factor 4α in hepatocellular carcinoma. Hepatol Res 48:205–216

    Article  CAS  PubMed  Google Scholar 

  68. Yang M, Li S-N, Anjum KM et al (2013) A double-negative feedback loop between Wnt–β-catenin signaling and HNF4α regulates epithelial–mesenchymal transition in hepatocellular carcinoma. J Cell Sci 126:5692–5703

    CAS  PubMed  Google Scholar 

  69. Kitao A, Matsui O, Yoneda N et al (2011) The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiol 21:2056–2066

    Article  PubMed  Google Scholar 

  70. Ueno A, Masugi Y, Yamazaki K et al (2014) OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol 61:1080–1087

    Article  CAS  PubMed  Google Scholar 

  71. Kudo M (2020) Gd-EOB-DTPA-MRI could predict WNT/β-catenin mutation and resistance to immune checkpoint inhibitor therapy in hepatocellular carcinoma. Liver Cancer 9:479–490

    Article  PubMed  PubMed Central  Google Scholar 

  72. Harding JJ, Nandakumar S, Armenia J et al (2019) Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 25:2116–2126

    Article  CAS  PubMed  Google Scholar 

  73. Mulé S, Galletto Pregliasco A, Tenenhaus A et al (2020) Multiphase liver MRI for identifying the macrotrabecular-massive subtype of hepatocellular carcinoma. Radiology 295:562–571

    Article  PubMed  Google Scholar 

  74. Rhee H, Cho E-S, Nahm JH et al (2021) Gadoxetic acid-enhanced MRI of macrotrabecular-massive hepatocellular carcinoma and its prognostic implications. J Hepatol 74:109–121

    Article  CAS  PubMed  Google Scholar 

  75. Rhee H, An C, Kim H-Y, Yoo JE, Park YN, Kim M-J (2019) Hepatocellular carcinoma with irregular rim-like arterial phase hyperenhancement: more aggressive pathologic features. Liver Cancer 8:24–40

    Article  CAS  PubMed  Google Scholar 

  76. Kim H, Jang M, Park YN (2020) Histopathological variants of hepatocellular carcinomas: an update according to the 5th edition of the WHO Classification of Digestive System Tumors. J Liver Cancer 20:17–24

    Article  Google Scholar 

  77. Kim SH, Lim HK, Lee WJ, Choi D, Park CK (2009) Scirrhous hepatocellular carcinoma: comparison with usual hepatocellular carcinoma based on CT–pathologic features and long-term results after curative resection. Eur J Radiol 69:123–130

    Article  PubMed  Google Scholar 

  78. Seok JY, Na DC, Woo HG et al (2012) A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma-like gene expression trait and epithelial-mesenchymal transition. Hepatology 55:1776–1786

    Article  CAS  PubMed  Google Scholar 

  79. Kurogi M, Nakashima O, Miyaaki H, Fujimoto M, Kojiro M (2006) Clinicopathological study of scirrhous hepatocellular carcinoma. J Gastroenterol Hepatol 21:1470–1477

    PubMed  Google Scholar 

  80. Matsuura S, Aishima S, Taguchi K et al (2005) ‘Scirrhous’ type hepatocellular carcinomas: a special reference to expression of cytokeratin 7 and hepatocyte paraffin 1. Histopathology 47:382–390

    Article  CAS  PubMed  Google Scholar 

  81. Choi S-Y, Kim YK, Min JH et al (2018) Added value of ancillary imaging features for differentiating scirrhous hepatocellular carcinoma from intrahepatic cholangiocarcinoma on gadoxetic acid-enhanced MR imaging. Eur Radiol 28:2549–2560

    Article  PubMed  Google Scholar 

  82. Yamashita Y, Fan ZM, Yamamoto H et al (1993) Sclerosing hepatocellular carcinoma: radiologic findings. Abdom Imaging 18:347–351

    Article  CAS  PubMed  Google Scholar 

  83. Kim H, Choi GH, Na DC et al (2011) Human hepatocellular carcinomas with “Stemness”-related marker expression: keratin 19 expression and a poor prognosis. Hepatology 54:1707–1717

    Article  CAS  PubMed  Google Scholar 

  84. Rhee H, Kim H, Park YN (2020) Clinico-radio-pathological and molecular features of hepatocellular carcinomas with keratin 19 expression. Liver Cancer:1–19

  85. Takano M, Shimada K, Fujii T et al (2016) Keratin 19 as a key molecule in progression of human hepatocellular carcinomas through invasion and angiogenesis. BMC Cancer 16:1–9

    Article  CAS  Google Scholar 

  86. Uenishi T, Kubo S, Yamamoto T et al (2003) Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Cancer Sci 94:851–857

    Article  CAS  PubMed  Google Scholar 

  87. Durnez A, Verslype C, Nevens F et al (2006) The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology 49:138–151

    Article  CAS  PubMed  Google Scholar 

  88. Yamashita T, Forgues M, Wang W et al (2008) EpCAM and α-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 68:1451–1461

    Article  CAS  PubMed  Google Scholar 

  89. Jeong HT, Kim MJ, Kim YE, Park YN, Choi GH, Choi JS (2012) MRI features of hepatocellular carcinoma expressing progenitor cell markers. Liver Int 32:430–440

    PubMed  Google Scholar 

  90. Choi S-Y, Kim SH, Park CK et al (2018) Imaging Features of Gadoxetic Acid–enhanced and Diffusion-weighted MR Imaging for Identifying Cytokeratin 19-positive Hepatocellular Carcinoma: A Retrospective Observational Study. Radiology 286:897–908

    Article  PubMed  Google Scholar 

  91. Lee J-S, Heo J, Libbrecht L et al (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416

  92. Fang JH, Zhou HC, Zhang C et al (2015) A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial–mesenchymal transition–independent manner. Hepatology 62:452–465

    Article  CAS  PubMed  Google Scholar 

  93. Renne SL, Woo HY, Allegra S et al (2020) Vessels encapsulating tumor clusters (VETC) is a powerful predictor of aggressive hepatocellular carcinoma. Hepatology 71:183–195

    Article  CAS  PubMed  Google Scholar 

  94. Koo HR, Park M-S, Kim M-J et al (2008) Radiological and clinical features of sarcomatoid hepatocellular carcinoma in 11 cases. J Comput Assist Tomogr 32:745–749

    Article  PubMed  Google Scholar 

  95. Kakizoe S, Kojiro M, Nakashima T (1987) Hepatocellular carcinoma with sarcomatous change. Clinicopathologic and immunohistochemical studies of 14 autopsy cases. Cancer 59:310–316

    Article  CAS  PubMed  Google Scholar 

  96. Kojiro M, Sugihara S, Kakizoe S, Nakashima O, Kiyomatsu K (1989) Hepatocellular carcinoma with sarcomatous change: a special reference to the relationship with anticancer therapy. Cancer Chemother Pharmacol 23:S4–S8

    Article  PubMed  Google Scholar 

  97. Maeda T, Adachi E, Kajiyama K, Takenaka K, Sugimachi K, Tsuneyoshi M (1996) Spindle cell hepatocellular carcinoma: a clinicopathologic and immunohistochemical analysis of 15 cases. Cancer 77:51–57

    Article  CAS  PubMed  Google Scholar 

  98. Liao SH, Su TH, Jeng YM et al (2019) Clinical manifestations and outcomes of patients with sarcomatoid hepatocellular carcinoma. Hepatology 69:209–221

    Article  PubMed  Google Scholar 

  99. Honda H, Hayashi T, Yoshida K et al (1996) Hepatocellular carcinoma with sarcomatous change: characteristic findings of two-phased incremental CT. Abdom Imaging 21:37–40

    Article  CAS  PubMed  Google Scholar 

  100. Friedman A, Lichtenstein J, Goodman Z, Fishman E, Siegelman S, Dachman A (1985) Fibrolamellar hepatocellular carcinoma. Radiology 157:583–587

    Article  CAS  PubMed  Google Scholar 

  101. McLarney JK, Rucker PT, Bender GN, Goodman ZD, Kashitani N, Ros PR (1999) Fibrolamellar carcinoma of the liver: radiologic-pathologic correlation. Radiographics 19:453–471

    Article  CAS  PubMed  Google Scholar 

  102. Lalazar G, Simon S (2018) Fibrolamellar carcinoma: recent advances and unresolved questions on the molecular mechanisms Semin Liver Dis. NIH Public Access, pp 51

  103. Kakar S, Burgart LJ, Batts KP, Garcia J, Jain D, Ferrell LD (2005) Clinicopathologic features and survival in fibrolamellar carcinoma: comparison with conventional hepatocellular carcinoma with and without cirrhosis. Mod Pathol 18:1417–1423

    Article  PubMed  Google Scholar 

  104. Craig JR, Peters RL, Edmondson HA, Omata M (1980) Fibrolamellar carcinoma of the liver: a tumor of adolescents and young adults with distinctive clinico-pathologic features. Cancer 46:372–379

    Article  CAS  PubMed  Google Scholar 

  105. Ichikawa T, Federle MP, Grazioli L, Madariaga J, Nalesnik M, Marsh W (1999) Fibrolamellar hepatocellular carcinoma: imaging and pathologic findings in 31 recent cases. Radiology 213:352–361

    Article  CAS  PubMed  Google Scholar 

  106. Ichikawa T, Federle MP, Grazioli L, Marsh W (2000) Fibrolamellar hepatocellular carcinoma: pre-and posttherapy evaluation with CT and MR imaging. Radiology 217:145–151

    Article  CAS  PubMed  Google Scholar 

  107. Mayo SC, Mavros MN, Nathan H et al (2014) Treatment and prognosis of patients with fibrolamellar hepatocellular carcinoma: a national perspective. J Am Coll Surg 218:196–205

    Article  PubMed  Google Scholar 

  108. Sorenson EC, Khanin R, Bamboat ZM et al (2017) Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates p53 and IGF2BP1 dysregulation. PLoS One 12:e0176562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zenali MJ, Tan D, Li W, Dhingra S, Brown RE (2010) Stemness characteristics of fibrolamellar hepatocellular carcinoma: immunohistochemical analysis with comparisons to conventional hepatocellular carcinoma. Ann Clin Lab Sci 40:126–134

    PubMed  Google Scholar 

  110. Ganeshan D, Szklaruk J, Kundra V, Kaseb A, Rashid A, Elsayes KM (2014) Imaging features of fibrolamellar hepatocellular carcinoma. AJR Am J Roentgenol 202:544–552

    Article  PubMed  Google Scholar 

  111. Corrigan K, Semelka R (1995) Dynamic contrast-enhanced MR imaging of fibrolamellar hepatocellular carcinoma. Abdom Imaging 20:122–125

    Article  CAS  PubMed  Google Scholar 

  112. Kim JH, Joo I, Lee JM (2019) Atypical appearance of hepatocellular carcinoma and its mimickers: how to solve challenging cases using gadoxetic acid-enhanced liver magnetic resonance imaging. Korean J Radiol 20:1019–1041

    Article  PubMed  PubMed Central  Google Scholar 

  113. Forner A, Da Fonseca LG, Díaz-González Á, Sanduzzi-Zamparelli M, Reig M, Bruix J (2019) Controversies in the management of hepatocellular carcinoma. JHEP Rep 1:17–29

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lee S, Kim KW, Jeong WK et al (2020) Gadoxetic acid–enhanced MRI as a predictor of recurrence of HCC after liver transplantation. Eur Radiol 30:987–995

    Article  PubMed  Google Scholar 

  115. Keenan BP, Fong L, Kelley RK (2019) Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response. J Immunother Cancer 7:1–13

    Article  Google Scholar 

  116. Zhu AX, Kang Y-K, Yen C-J et al (2019) Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 20:282–296

    Article  CAS  PubMed  Google Scholar 

  117. Hectors SJ, Lewis S, Besa C et al (2020) MRI radiomics features predict immuno-oncological characteristics of hepatocellular carcinoma. Eur Radiol 30:3759–3769

Download references

Acknowledgements

We are grateful to JH Kim, I Joo, and JM Lee for supplying cross-sectional and pathologic images of fibrolamellar HCC.

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Young Choi.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Jin-Young Choi.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Approval from the institutional animal care committee was not required since no patient data was required for the preparation of this review.

Ethical approval

Institutional Review Board approval was not required due to article type (review).

Methodology

• Review of published literature

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PPTX 5720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J.K., Choi, JY., Rhee, H. et al. MRI features of histologic subtypes of hepatocellular carcinoma: correlation with histologic, genetic, and molecular biologic classification. Eur Radiol 32, 5119–5133 (2022). https://doi.org/10.1007/s00330-022-08643-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-022-08643-4

Keywords

Navigation