Skip to main content
Log in

Response prediction of vestibular schwannoma after gamma-knife radiosurgery using pretreatment dynamic contrast-enhanced MRI: a prospective study

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

There are few known predictive factors for response to gamma-knife radiosurgery (GKRS) in vestibular schwannoma (VS). We investigated the predictive role of pretreatment dynamic contrast-enhanced (DCE)-MRI parameters regarding the tumor response after GKRS in sporadic VS.

Methods

This single-center prospective study enrolled participants between April 2017 and February 2019. We performed a volumetric measurement of DCE-MRI-derived parameters before GKRS. The tumor volume was measured in a follow-up MRI. The pharmacokinetic parameters were compared between responders and nonresponders according to 20% or more tumor volume reduction. Stepwise multivariable logistic regression analyses were performed, and the diagnostic performance of DCE-MRI parameters for the prediction of tumor response was evaluated by receiver operating characteristic curve analysis.

Results

Ultimately, 35 participants (21 women, 52 ± 12 years) were included. There were 22 (62.9%) responders with a mean follow-up interval of 30.2 ± 5.7 months. Ktrans (0.036 min−1 vs. 0.057 min−1, p = .008) and initial area under the time-concentration curve within 90 s (IAUC90) (84.4 vs. 143.6, p = .003) showed significant differences between responders and nonresponders. Ktrans (OR = 0.96, p = .021) and IAUC90 (OR = 0.97, p = .004) were significant differentiating variables in each multivariable model with clinical variables for tumor response prediction. Ktrans showed a sensitivity of 81.8% and a specificity of 69.2%, and IAUC90 showed a sensitivity of 100% and a specificity of 53.8% for tumor response prediction.

Conclusion

DCE-MRI (particularly Ktrans and IAUC90) has the potential to be a predictive factor for tumor response in VS after GKRS.

Key Points

•Pretreatment prediction of gamma-knife radiosurgery response in vestibular schwannoma is still challenging.

•Dynamic contrast-enhanced MRI could have predictive value for the response of vestibular schwannoma after gamma-knife radiosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DCE:

Dynamic contrast-enhanced

GKRS:

Gamma-knife radiosurgery

K trans :

Volume transfer constant

v e :

Volume of extravascular extracellular space

v p :

Blood plasma volume

VS:

Vestibular schwannoma

References

  1. Boari N, Bailo M, Gagliardi F et al (2014) Gamma knife radiosurgery for vestibular schwannoma: clinical results at long-term follow-up in a series of 379 patients. J Neurosurg 121(Suppl):123–142

    Article  PubMed  Google Scholar 

  2. Nuno M, Ugiliweneza B, Boakye M, Monfared A (2019) Morbidity of vestibular schwannomas as documented by treating providers. Otol Neurotol 40:e142–e149

    Article  PubMed  Google Scholar 

  3. Lewis D, Roncaroli F, Agushi E et al (2019) Inflammation and vascular permeability correlate with growth in sporadic vestibular schwannoma. Neuro Oncol 21:314–325

    Article  PubMed  Google Scholar 

  4. Meijer OW, Weijmans EJ, Knol DL et al (2008) Tumor-volume changes after radiosurgery for vestibular schwannoma: implications for follow-up MR imaging protocol. AJNR Am J Neuroradiol 29:906–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schneider T, Chapiro J, Lin M et al (2016) 3D quantitative assessment of response to fractionated stereotactic radiotherapy and single-session stereotactic radiosurgery of vestibular schwannoma. Eur Radiol 26:849–857

    Article  CAS  PubMed  Google Scholar 

  6. Nakamura H, Jokura H, Takahashi K, Boku N, Akabane A, Yoshimoto T (2000) Serial follow-up MR imaging after gamma knife radiosurgery for vestibular schwannoma. AJNR Am J Neuroradiol 21:1540–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  8. Zahra MA, Hollingsworth KG, Sala E, Lomas DJ, Tan LT (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8:63–74

    Article  PubMed  Google Scholar 

  9. Jung SC, Yeom JA, Kim JH et al (2014) Glioma: application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading. AJNR Am J Neuroradiol 35:1103–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Conte GM, Altabella L, Castellano A et al (2019) Comparison of T1 mapping and fixed T1 method for dynamic contrast-enhanced MRI perfusion in brain gliomas. Eur Radiol 29:3467–3479

    Article  CAS  PubMed  Google Scholar 

  11. Yun TJ, Park CK, Kim TM et al (2015) Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology 274:830–840

    Article  PubMed  Google Scholar 

  12. Hwang I, Choi SH, Park CK et al (2020) Dynamic contrast-enhanced MR imaging of nonenhancing T2 high-signal-intensity lesions in baseline and posttreatment glioblastoma: temporal change and prognostic value. AJNR Am J Neuroradiol 41:49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim HS, Kwon SL, Choi SH et al (2020) Prognostication of anaplastic astrocytoma patients: application of contrast leakage information of dynamic susceptibility contrast-enhanced MRI and dynamic contrast-enhanced MRI. Eur Radiol 30:2171–2181

    Article  PubMed  Google Scholar 

  14. Li KL, Djoukhadar I, Zhu X et al (2016) Vascular biomarkers derived from dynamic contrast-enhanced MRI predict response of vestibular schwannoma to antiangiogenic therapy in type 2 neurofibromatosis. Neuro Oncol 18:275–282

    Article  CAS  PubMed  Google Scholar 

  15. Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    Article  PubMed  Google Scholar 

  16. Nam JG, Kang KM, Choi SH et al (2017) Comparison between the prebolus T1 measurement and the fixed T1 value in dynamic contrast-enhanced MR imaging for the differentiation of true progression from pseudoprogression in glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy. AJNR Am J Neuroradiol 38:2243–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanzaki J, Tos M, Sanna M, Moffat DA, Monsell EM, Berliner KI (2003) New and modified reporting systems from the consensus meeting on systems for reporting results in vestibular schwannoma. Otol Neurotol 24:642–648

    Article  PubMed  Google Scholar 

  18. Wu CC, Guo WY, Chung WY et al (2017) Magnetic resonance imaging characteristics and the prediction of outcome of vestibular schwannomas following Gamma Knife radiosurgery. J Neurosurg 127:1384–1391

    Article  PubMed  Google Scholar 

  19. Ho HH, Li YH, Lee JC et al (2018) Vestibular schwannomas: accuracy of tumor volume estimated by ice cream cone formula using thin-sliced MR images. PLoS One 13:e0192411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Plotkin SR, Halpin C, Blakeley JO et al (2009) Suggested response criteria for phase II antitumor drug studies for neurofibromatosis type 2 related vestibular schwannoma. J Neurooncol 93:61–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35

    Article  CAS  PubMed  Google Scholar 

  22. Matsuo M, Matsumoto S, Mitchell JB, Krishna MC, Camphausen K (2014) Magnetic resonance imaging of the tumor microenvironment in radiotherapy: perfusion, hypoxia, and metabolism. Semin Radiat Oncol 24:210–217

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kondziolka D, Shin SM, Brunswick A, Kim I, Silverman JS (2015) The biology of radiosurgery and its clinical applications for brain tumors. Neuro Oncol 17:29–44

    Article  CAS  PubMed  Google Scholar 

  24. Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW (2012) Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 177:311–327

    Article  CAS  PubMed  Google Scholar 

  25. Linskey ME, Martinez AJ, Kondziolka D et al (1993) The radiobiology of human acoustic schwannoma xenografts after stereotactic radiosurgery evaluated in the subrenal capsule of athymic mice. J Neurosurg 78:645–653

    Article  CAS  PubMed  Google Scholar 

  26. de Vries M, Briaire-de Bruijn I, Malessy MJ, de Bruine SF, van der Mey AG, Hogendoorn PC (2013) Tumor-associated macrophages are related to volumetric growth of vestibular schwannomas. Otol Neurotol 34:347–352

    Article  PubMed  Google Scholar 

  27. Lewis D, Donofrio CA, O’Leary C et al (2020) The microenvironment in sporadic and neurofibromatosis type II-related vestibular schwannoma: the same tumor or different? A comparative imaging and neuropathology study. J Neurosurg 134:1419–1429

    Article  PubMed  Google Scholar 

  28. Chung WJ, Kim HS, Kim N, Choi CG, Kim SJ (2013) Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Radiology 269:561–568

    Article  PubMed  Google Scholar 

  29. Hamilton JD, Lin J, Ison C et al (2015) Dynamic contrast-enhanced perfusion processing for neuroradiologists: model-dependent analysis may not be necessary for determining recurrent high-grade glioma versus treatment effect. AJNR Am J Neuroradiol 36:686–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roberts C, Issa B, Stone A, Jackson A, Waterton JC, Parker GJ (2006) Comparative study into the robustness of compartmental modeling and model-free analysis in DCE-MRI studies. J Magn Reson Imaging 23:554–563

    Article  PubMed  Google Scholar 

  31. Haidara A, Peltier J, Zunon-Kipre Y, N’Da HA, Drogba L, Gars DL (2015) Microsurgical anatomy of the labyrinthine artery and clinical relevance. Turk Neurosurg 25:539–543

    PubMed  Google Scholar 

  32. Bowden G, Cavaleri J, Monaco E III, Niranjan A, Flickinger J, Lunsford LD (2017) Cystic vestibular schwannomas respond best to radiosurgery. Neurosurgery 81:490–497

    Article  PubMed  Google Scholar 

  33. Camargo A, Schneider T, Liu L, Pakpoor J, Kleinberg L, Yousem DM (2017) Pretreatment ADC values predict response to radiosurgery in vestibular schwannomas. AJNR Am J Neuroradiol 38:1200–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S (2019) Emerging applications of artificial intelligence in neuro-oncology. Radiology 290:607–618

    Article  PubMed  Google Scholar 

  35. Speckter H, Santana J, Bido J et al (2019) Texture analysis of standard magnetic resonance images to predict response to gamma knife radiosurgery in vestibular schwannomas. World Neurosurg 132:e228–e234

  36. Yang HC, Wu CC, Lee CC et al (2020) Prediction of pseudoprogression and long-term outcome of vestibular schwannoma after gamma knife radiosurgery based on preradiosurgical MR radiomics. Radiother Oncol 155:123–130

    Article  PubMed  Google Scholar 

  37. Delsanti C, Roche PH, Thomassin JM, Regis J (2008) Morphological changes of vestibular schwannomas after radiosurgical treatment: pitfalls and diagnosis of failure. Prog Neurol Surg 21:93–97

    Article  PubMed  Google Scholar 

  38. Delsanti C, Tamura M, Galanaud D, Regis J (2004) Changing radiological results, pitfalls and criteria of failure. Neurochirurgie 50:312–319

    CAS  PubMed  Google Scholar 

  39. Nagano O, Higuchi Y, Serizawa T et al (2008) Transient expansion of vestibular schwannoma following stereotactic radiosurgery. J Neurosurg 109:811–816

    Article  PubMed  Google Scholar 

  40. Hayhurst C, Zadeh G (2012) Tumor pseudoprogression following radiosurgery for vestibular schwannoma. Neuro Oncol 14:87–92

    Article  PubMed  Google Scholar 

  41. Goldbrunner R, Weller M, Regis J et al (2020) EANO guideline on the diagnosis and treatment of vestibular schwannoma. Neuro Oncol 22:31–45

    Article  PubMed  Google Scholar 

  42. Sherry AD, Khattab MH, Totten DJ et al (2020) Current volumetric models overestimate vestibular schwannoma size following stereotactic radiosurgery. Otol Neurotol 41:e262–e267

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from Bracco Imaging, a grant from the Korea Healthcare technology R&D Projects, Ministry for Health, Welfare & Family Affairs (HI16C1111), by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016M3C7A1914002), by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1A2C2008949 and NRF-2020R1A4A1018714), by Creative-Pioneering Researchers Program through Seoul National University (SNU), and by the Institute for Basic Science (IBS-R006-A1). Bracco Imaging, Korea Healthcare technology R&D Projects, Ministry for Health, Welfare & Family Affairs, HI16C1111, Seung Hong Choi, the Brain Research Program through the National Research Foundation of Korea, NRF-2016M3C7A1914002, Seung Hong Choi, Basic Science Research Program through the National Research Foundation of Korea, NRF-2020R1A2C2008949, Seung Hong Choi, NRF-2020R1A4A1018714, Seung Hong Choi, Creative-Pioneering Researchers Program through Seoul National University, and by the Institute for Basic Science, IBS-R006-A1, Seung Hong Choi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hong Choi.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Seung Hong Choi.

Conflict of interest

Nothing to declare from all authors.

Statistics and biometry

One of the authors has significant statistical expertise.

In addition, no complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all participants.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

•prospective

•diagnostic or prognostic study

•performed at one institution

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 257 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, I., Choi, S.H., Kim, J.W. et al. Response prediction of vestibular schwannoma after gamma-knife radiosurgery using pretreatment dynamic contrast-enhanced MRI: a prospective study. Eur Radiol 32, 3734–3743 (2022). https://doi.org/10.1007/s00330-021-08517-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08517-1

Keywords

Navigation