Skip to main content

Advertisement

Log in

Dedicated breast CT: state of the art—Part I. Historical evolution and technical aspects

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

A Correction to this article was published on 07 January 2022

This article has been updated

Abstract

Dedicated breast CT is an emerging 3D isotropic imaging technology for breast, which overcomes the limitations of 2D compression mammography and limited angle tomosynthesis while providing some of the advantages of magnetic resonance imaging. This first installment in a 2-part review describes the evolution of dedicated breast CT beginning with a historical perspective and progressing to the present day. Moreover, it provides an overview of state-of-the-art technology. Particular emphasis is placed on technical limitations in scan protocol, radiation dose, breast coverage, patient comfort, and image artifact. Proposed methods of how to address these technical challenges are also discussed.

Key Points

• Advantages of breast CT include no tissue overlap, improved patient comfort, rapid acquisition, and concurrent assessment of microcalcifications and contrast enhancement.

• Current clinical and prototype dedicated breast CT systems differ in acquisition modes, imaging techniques, and detector types.

• There are still details to be decided regarding breast CT techniques, such as scan protocol, radiation dose, breast coverage, patient comfort, and image artifact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

Abbreviations

BCT:

Breast computed tomography

CBBCT:

Cone-beam breast computed tomography

CE:

Contrast-enhanced

DBT:

Digital breast tomosynthesis

NC:

Non-contrast

MRI:

Magnetic resonance imaging

MG:

Mammography

MGD:

Mean glandular dose

US:

Ultrasound

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    PubMed  Google Scholar 

  2. Bleyer A, Welch HG (2012) Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 367:1998–2005

    Article  CAS  PubMed  Google Scholar 

  3. Chen Z, Ning R (2003) Why should breast tumour detection go three dimensional? Phys Med Biol 48:2217–2228

    PubMed  Google Scholar 

  4. D’Orsi CJ, Getty DJ, Pickett RM et al (2013) Stereoscopic digital mammography: improved specificity and reduced rate of recall in a prospective clinical trial. Radiology 266:81–88

    PubMed  Google Scholar 

  5. Alabousi M, Zha N, Salameh JP et al (2020) Digital breast tomosynthesis for breast cancer detection: a diagnostic test accuracy systematic review and meta-analysis. Eur Radiol 30:2058–2071

    PubMed  Google Scholar 

  6. Karellas A, Lo JY, Orton CG (2008) Point/counterpoint. Cone beam x-ray CT will be superior to digital x-ray tomosynthesis in imaging the breast and delineating cancer. Med Phys 35:409–411

    PubMed  Google Scholar 

  7. Boss A (2018) Editorial comment: cone-beam and phase contrast CT: new horizons in breast imaging? Eur Radiol 28:3729–3730

    PubMed  Google Scholar 

  8. O’Connell AM, Karellas A, Vedantham S, Kawakyu-O’Connor DT (2018) Newer technologies in breast cancer imaging: dedicated cone-beam breast computed tomography. Semin Ultrasound CT MR 39:106–113

    PubMed  Google Scholar 

  9. Gisvold JJ, Karsell PR, Reese EC (1977) Clinical evaluation of computerized tomographic mammography. Mayo Clin Proc 52:181–185

    CAS  PubMed  Google Scholar 

  10. Chang CH, Sibala JL, Gallagher JH et al (1977) Computed tomography of the breast. A preliminary report. Radiology 124:827–829

    CAS  PubMed  Google Scholar 

  11. Chang CH, Sibala JL, Fritz SL, Gallagher JH, Dwyer SJ 3rd, Templeton AW (1978) Computed tomographic evaluation of the breast. AJR Am J Roentgenol 131:459–464

    CAS  PubMed  Google Scholar 

  12. Chang CH, Sibala JL, Lin F, Jewell WR, Templeton AW (1978) Preoperative diagnosis of potentially precancerous breast lesions by computed tomography breast scanner: preliminary study. Radiology 129:209–210

    CAS  PubMed  Google Scholar 

  13. Chang CH, Sibala JL, Fritz SL, Dwyer SJ 3rd, Templeton AW (1979) Specific value of computed tomographic breast scanner (CT/M) in diagnosis of breast diseases. Radiology 132:647–652

    CAS  PubMed  Google Scholar 

  14. Gisvold JJ, Reese DF, Karsell PR (1979) Computed tomographic mammography (CTM). AJR Am J Roentgenol 133:1143–1149

    CAS  PubMed  Google Scholar 

  15. Chang CH, Sibala JL, Fritz SL et al (1980) Computed tomography in detection and diagnosis of breast cancer. Cancer 46:939–946

    CAS  PubMed  Google Scholar 

  16. https://patents.google.com/patent/US6480565B1/en. Accessed 20 Mar 2021

  17. Boone JM, Nelson TR (2000) The case for dedicated CT screening for breast cancer. Radiology 217:346

    Google Scholar 

  18. Gazi PM, Yang K, Burkett GW Jr, Aminololama-Shakeri S, Seibert JA, Boone JM (2015) Evolution of spatial resolution in breast CT at UC Davis. Med Phys 42:1973–1981

    PubMed Central  PubMed  Google Scholar 

  19. Boone JM, Nelson TR, Lindfors KK, Seibert JA (2001) Dedicated breast CT: radiation dose and image quality evaluation. Radiology 221:657–667

    CAS  PubMed  Google Scholar 

  20. Boone JM, Shah N, Nelson TR (2004) A comprehensive analysis of DgN(CT) coefficients for pendant-geometry cone-beam breast computed tomography. Med Phys 31:226–235

    CAS  PubMed  Google Scholar 

  21. Boone JM, Kwan AL, Seibert JA, Shah N, Lindfors KK, Nelson TR (2005) Technique factors and their relationship to radiation dose in pendant geometry breast CT. Med Phys 32:3767–3776

    PubMed  Google Scholar 

  22. Yang K, Kwan AL, Miller DF, Boone JM (2006) A geometric calibration method for cone beam CT systems. Med Phys 33:1695–1706

    PubMed  Google Scholar 

  23. Yaffe MJ, Boone JM, Packard N et al (2009) The myth of the 50-50 breast. Med Phys 36:5437–5443

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Boone JM (2010) Method for evaluating bow tie filter angle-dependent attenuation in CT: theory and simulation results. Med Phys 37:40–48

    PubMed  Google Scholar 

  25. http://koninghealth.com/en. Accessed 17 Nov 2020

  26. https://www.ab-ct.com. Accessed 18 Nov 2020

  27. http://www.zumatek.com. Accessed 22 Nov 2020

  28. https://izocorp.com. Accessed 20 Dec 2020

  29. Ding H, Ducote JL, Molloi S (2012) Breast composition measurement with a cadmium-zinc-telluride based spectral computed tomography system. Med Phys 39:1289–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Ding H, Ducote JL, Molloi S (2013) Measurement of breast tissue composition with dual energy cone-beam computed tomography: a postmortem study. Med Phys 40:061902

    PubMed Central  PubMed  Google Scholar 

  31. Silkwood JD, Matthews KL, Shikhaliev PM (2013) Photon counting spectral breast CT: effect of adaptive filtration on CT numbers, noise, and contrast to noise ratio. Med Phys 40:051905

    PubMed  Google Scholar 

  32. Ding H, Klopfer MJ, Ducote JL, Masaki F, Molloi S (2014) Breast tissue characterization with photon-counting spectral CT imaging: a postmortem breast study. Radiology 272:731–738

    PubMed  Google Scholar 

  33. Ruth V, Kolditz D, Steiding C, Kalender WA (2020) Investigation of spectral performance for single-scan contrast-enhanced breast CT using photon-counting technology: a phantom study. Med Phys 47:2826–2837

    CAS  PubMed  Google Scholar 

  34. Madhav P, Crotty DJ, McKinley RL, Tornai MP (2006) Initial development of a dual-modality SPECT-CT system for dedicated mammotomography. 2006 IEEE Nucl Sci Symp Conf Rec 4:2382–2386

  35. Mettivier G, Russo P, Cesarelli M et al (2011) Dedicated scanner for laboratory investigations on cone-beam CT/SPECT imaging of the breast. Nucl Instrum Methods Phys Res A 629:350–356

    CAS  Google Scholar 

  36. Shah JP, Mann SD, McKinley RL, Tornai MP (2017) Implementation and CT sampling characterization of a third-generation SPECT-CT system for dedicated breast imaging. J Med Imaging (Bellingham) 4:033502

    Google Scholar 

  37. Wu Y, Bowen SL, Yang K et al (2009) PET characteristics of a dedicated breast PET/CT scanner prototype. Phys Med Biol 54:4273–4287

    PubMed Central  PubMed  Google Scholar 

  38. Bowen SL, Wu Y, Chaudhari AJ et al (2009) Initial characterization of a dedicated breast PET/CT scanner during human imaging. J Nucl Med 50:1401–1408

    PubMed  Google Scholar 

  39. Boone JM, Yang K, Burkett GW et al (2010) An X-ray computed tomography/positron emission tomography system designed specifically for breast imaging. Technol Cancer Res Treat 9:29–44

    PubMed  Google Scholar 

  40. Raylman RR, Van Kampen W, Stolin AV et al (2018) A dedicated breast-PET/CT scanner: evaluation of basic performance characteristics. Med Phys 45:1603–1613

    PubMed  Google Scholar 

  41. Auweter SD, Herzen J, Willner M et al (2014) X-ray phase-contrast imaging of the breast--advances towards clinical implementation. Br J Radiol 87:20130606

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Tavakoli Taba S, Gureyev TE, Alakhras M, Lewis S, Lockie D, Brennan PC (2018) X-ray phase-contrast technology in breast imaging: principles, options, and clinical application. AJR Am J Roentgenol 211:133–145

    Google Scholar 

  43. Longo R, Arfelli F, Bellazzini R et al (2016) Towards breast tomography with synchrotron radiation at Elettra: first images. Phys Med Biol 61:1634–1649

    CAS  PubMed  Google Scholar 

  44. Longo R, Arfelli F, Bonazza D et al (2019) Advancements towards the implementation of clinical phase-contrast breast computed tomography at Elettra. J Synchrotron Radiat 26:1343–1353

    CAS  PubMed  Google Scholar 

  45. Glick SJ (2007) Breast CT. Annu Rev Biomed Eng 9:501–526

    CAS  PubMed  Google Scholar 

  46. Sarno A, Mettivier G, Russo P (2015) Dedicated breast computed tomography: basic aspects. Med Phys 42:2786–2804

    PubMed  Google Scholar 

  47. Chen B, Ning R (2002) Cone-beam volume CT breast imaging: feasibility study. Med Phys 29:755–770

    PubMed  Google Scholar 

  48. Kalender WA, Beister M, Boone JM, Kolditz D, Vollmar SV, Weigel MC (2012) High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations. Eur Radiol 22:1–8

    PubMed  Google Scholar 

  49. Kalender WA, Kolditz D, Steiding C et al (2017) Technical feasibility proof for high-resolution low-dose photon-counting CT of the breast. Eur Radiol 27:1081–1086

    PubMed  Google Scholar 

  50. American College of Radiology (ACR) Committee on Drugs and Contrast Media (2021) ACR manual on contrast media. Version 2021. https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf. Accessed 6 June 2021

  51. European Society of Urogenital Radiology (ESUR) Contrast Medium Safety Committee (2019) ESUR Guidelines on Contrast Agents. Version 10.0. https://www.esur.org/fileadmin/content/2019/ESUR_Guidelines_10.0_Final_Version.pdf. Accessed 6 June 2021

  52. Prionas ND, Lindfors KK, Ray S et al (2010) Contrast-enhanced dedicated breast CT: initial clinical experience. Radiology 256:714–723

    PubMed Central  PubMed  Google Scholar 

  53. Zuley M, Sumkin J, Ganott M et al (2011) Comparison of contrast-enhanced cone beam computed tomography to contrast-enhanced magnetic resonance imaging in the categorization of breast lesions. RSNA2011, Chicago http://archive.rsna.org/2011/11003962.html. Accessed 18 Oct 2020

  54. Han P, Ye Z (2013) Clinical application and analysis of contrast-enhanced cone-beam breast CT (CE-CBBCT) in differentiating benign and malignant breast lesions. RSNA2013, Chicago http://archive.rsna.org/2013/13020001.html. Accessed 18 Oct 2020

  55. Seifert P, Conover D, Zhang Y et al (2014) Evaluation of malignant breast lesions in the diagnostic setting with cone beam breast computed tomography (breast CT): feasibility study. Breast J 20:364–374

    PubMed  Google Scholar 

  56. Aminololama-Shakeri S, Abbey CK, Gazi P et al (2016) Differentiation of ductal carcinoma in-situ from benign micro-calcifications by dedicated breast computed tomography. Eur J Radiol 85:297–303

    PubMed  Google Scholar 

  57. He N, Wu YP, Kong Y et al (2016) The utility of breast cone-beam computed tomography, ultrasound, and digital mammography for detecting malignant breast tumors: a prospective study with 212 patients. Eur J Radiol 85:392–403

    PubMed  Google Scholar 

  58. Uhlig J, Fischer U, Surov A, Lotz J, Wienbeck S (2018) Contrast-enhanced cone-beam breast-CT: analysis of optimal acquisition time for discrimination of breast lesion malignancy. Eur J Radiol 99:9–16

    PubMed  Google Scholar 

  59. Wienbeck S, Fischer U, Luftner-Nagel S, Lotz J, Uhlig J (2018) Contrast-enhanced cone-beam breast-CT (CBBCT): clinical performance compared to mammography and MRI. Eur Radiol 28:3731–3741

    PubMed  Google Scholar 

  60. Zhu Y, Zhang Y, Ma Y et al (2020) Cone-beam breast CT features associated with HER2/neu overexpression in patients with primary breast cancer. Eur Radiol 30:2731–2739

    PubMed  Google Scholar 

  61. Chen JT, Zhou CY, He N, Wu YP (2020) Optimal acquisition time to discriminate between breast cancer subtypes with contrast-enhanced cone-beam CT. Diagn Interv Imaging 101:391–399

    CAS  PubMed  Google Scholar 

  62. Zhao X, Su D, Kang W et al (2020) The value of cone beam breast CT in differential diagnosis of benign and malignant mass lesions. Radiol Pract 35:1268–1273 in Chinese

    Google Scholar 

  63. Kang W, Zhong W, Su D (2020) The cone-beam breast computed tomography characteristics of breast non-mass enhancement lesions. Acta Radiol. https://doi.org/10.1177/0284185120963923

  64. Lindfors KK, Boone JM, Nelson TR, Yang K, Kwan AL, Miller DF (2008) Dedicated breast CT: initial clinical experience. Radiology 246:725–733

    PubMed Central  PubMed  Google Scholar 

  65. O’Connell A, Conover DL, Zhang Y et al (2010) Cone-beam CT for breast imaging: radiation dose, breast coverage, and image quality. AJR Am J Roentgenol 195:496–509

    PubMed  Google Scholar 

  66. Saltybaeava N, Marcon M, Berger N et al (2019) First clinical application of spiral breast CT with photon-counting detector patient-specific radiation dose assessment. ECR2019 Book of Abstracts. Insights Imaging 10:S512. https://doi.org/10.1186/s13244-019-0713-y

  67. O’Connell AM, Kawakyu-O’Connor D (2012) Dedicated cone-beam breast computed tomography and diagnostic mammography: comparison of radiation dose, patient comfort, and qualitative review of imaging findings in BI-RADS 4 and 5 lesions. J Clin Imaging Sci 2:7

    PubMed Central  PubMed  Google Scholar 

  68. Wienbeck S, Uhlig J, Luftner-Nagel S et al (2017) The role of cone-beam breast-CT for breast cancer detection relative to breast density. Eur Radiol 27:5185–5195

    PubMed  Google Scholar 

  69. Aminololama-Shakeri S, Abbey CK, López JE et al (2019) Conspicuity of suspicious breast lesions on contrast enhanced breast CT compared to digital breast tomosynthesis and mammography. Br J Radiol 92:20181034

    PubMed Central  PubMed  Google Scholar 

  70. Sechopoulos I, Sabol JM, Berglund J et al (2014) Radiation dosimetry in digital breast tomosynthesis: report of AAPM Tomosynthesis Subcommittee Task Group 223. Med Phys 41:091501

    PubMed  Google Scholar 

  71. American College of Radiology (ACR) (2018) ACR practice parameter for the performance of screening and diagnostic mammography. Revised 2018 (Resolution 35). https://www.acr.org/-/media/ACR/Files/Practice-Parameters/screen-diag-mammo.pdf. Accessed 16 Sept 2020

  72. European Reference Organisation for Quality Assured Breast Screening and Diagnostic Services (EUREF) (2006) European guidelines for quality assurance in breast cancer screening and diagnosis. 4th edition. https://www.euref.org/downloads?download=24:european-guidelines-for-quality-assurance-inbreast-cancer-screening-and-diagnosis-pdf. Accessed 16 Sept 2020

  73. Yaffe MJ, Mainprize JG (2011) Risk of radiation-induced breast cancer from mammographic screening. Radiology 258:98–105

    PubMed  Google Scholar 

  74. Uhlig J, Fischer U, Biggemann L, Lotz J, Wienbeck S (2019) Pre- and post-contrast versus post-contrast cone-beam breast CT: can we reduce radiation exposure while maintaining diagnostic accuracy? Eur Radiol 29:3141–3148

    PubMed  Google Scholar 

  75. Yang D, Ning R, Yu Y, Conover D, Lu X (2004) Implementation & evaluation of the half-scan scheme based on CBCT (cone-beam CT) system. Proc SPIE 5368:542–551

    Google Scholar 

  76. Chen L, Shaw CC, Lai C et al (2006) Comparison of full-scan and half-scan for cone beam breast CT imaging. Proc SPIE 6142:61424M

    Google Scholar 

  77. Didier C, Chen Y, O’Connor JM, Mah’D M, Glick SJ (2008) Quantitative comparison of weighted Feldkamp FBP full-scan and half-scan algorithms for contrast-enhanced CT breast imaging. Proc SPIE 6913:69133B

    Google Scholar 

  78. Chen L, Lai C, Zhong Y et al (2009) SU-FF-I-23: Full-scan versus half-scan in cone beam breast CT - a quantitative comparison. Med Phys 36:2439

    Google Scholar 

  79. Tseng HW, Karellas A, Vedantham S (2020) Sparse-view, short-scan, dedicated cone-beam breast computed tomography: image quality assessment. Biomed Phys Eng Express. https://doi.org/10.1088/1361-648X/abd739

  80. Makeev A, Glick SJ (2013) Investigation of statistical iterative reconstruction for dedicated breast CT. Med Phys 40:081904

    PubMed Central  PubMed  Google Scholar 

  81. Bian J, Yang K, Boone JM, Han X, Sidky EY, Pan X (2014) Investigation of iterative image reconstruction in low-dose breast CT. Phys Med Biol 59:2659–2685

    PubMed Central  PubMed  Google Scholar 

  82. Tseng HW, Vedantham S, Karellas A (2020) Cone-beam breast computed tomography using ultra-fast image reconstruction with constrained, total-variation minimization for suppression of artifacts. Phys Med 73:117–124

    PubMed Central  PubMed  Google Scholar 

  83. Fu Z, Tseng HW, Vedantham S, Karellas A, Bilgin A (2020) A residual dense network assisted sparse view reconstruction for breast computed tomography. Sci Rep 10:21111

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kalluri KS, Mahd M, Glick SJ (2013) Investigation of energy weighting using an energy discriminating photon counting detector for breast CT. Med Phys 40:081923

    PubMed Central  PubMed  Google Scholar 

  85. Li H, Yin L, Ye Z et al (2015) Comparative study of breast tissue coverage in cone-beam breast CT versus digital mammography. Chin J Radiol 49:488–490 in Chinese

    Google Scholar 

  86. McKinley RL, Bryzmialkiewicz CN, Madhav P, Tornai MP (2005) Investigation of cone-beam acquisitions implemented using a novel dedicated mammotomography system with unique arbitrary orbit capability. Proc SPIE 5745:609–617

    Google Scholar 

  87. Zeng K, Yu H, Fajardo LL, Wang G (2006) Cone-beam mammo-computed tomography from data along two tilting arcs. Med Phys 33:3621–3633

    PubMed  Google Scholar 

  88. Vedantham S, Karellas A, Emmons MM, Moss LJ, Hussain S, Baker SP (2013) Dedicated breast CT: geometric design considerations to maximize posterior breast coverage. Phys Med Biol 58:4099–4118

    PubMed Central  PubMed  Google Scholar 

  89. Vedantham S, Tseng HW, Konate S, Shi L, Karellas A (2020) Dedicated cone-beam breast CT using laterally-shifted detector geometry: quantitative analysis of feasibility for clinical translation. J Xray Sci Technol 28:405–426

    PubMed Central  PubMed  Google Scholar 

  90. Rößler AC, Wenkel E, Althoff F, Kalender W (2015) The influence of patient positioning in breast CT on breast tissue coverage and patient comfort. Rofo 36:115–122

  91. Dullum JR, Lewis EC, Mayer JA (2000) Rates and correlates of discomfort associated with mammography. Radiology 214:547–552

    CAS  PubMed  Google Scholar 

  92. Miller D, Livingstone V, Herbison P (2008) Interventions for relieving the pain and discomfort of screening mammography. Cochrane Database Syst Rev 1:CD002942

    Google Scholar 

  93. Lindfors KK, Boone JM, Newell MS, D’Orsi CJ (2010) Dedicated breast computed tomography: the optimal cross-sectional imaging solution? Radiol Clin N Am 48:1043–1054

    PubMed  Google Scholar 

  94. Kuzmiak CM, Cole EB, Zeng D, Tuttle LA, Steed D, Pisano ED (2016) Dedicated three-dimensional breast computed tomography: lesion characteristic perception by radiologists. J Clin Imaging Sci 6:14

    PubMed Central  PubMed  Google Scholar 

  95. Li H, Yin L, He N et al (2019) Comparison of comfort between cone beam breast computed tomography and digital mammography. Eur J Radiol 120:108674

    PubMed  Google Scholar 

  96. Berger N, Marcon M, Saltybaeva N et al (2019) Dedicated breast computed tomography with a photon-counting detector: initial results of clinical in vivo imaging. Invest Radiol 54:409–418

  97. Mendat CC, Mislan D, Hession-Kunz L (2017) Patient comfort from the technologist perspective: factors to consider in mammographic imaging. Int J Women's Health 9:359–364

    Google Scholar 

  98. Wienbeck S, Nowak C, Zapf A et al (2017) Artifacts caused by breast tissue markers in a dedicated cone-beam breast CT in comparison to full-field digital mammography. Acad Radiol 24:908–915

    PubMed  Google Scholar 

  99. Yang WT, Carkaci S, Chen L et al (2007) Dedicated cone-beam breast CT: feasibility study with surgical mastectomy specimens. AJR Am J Roentgenol 189:1312–1315

    PubMed Central  PubMed  Google Scholar 

  100. Wang T, Shen Y, Zhong Y, Lai CJ, Wang J, Shaw CC (2014) A sinogram based technique for image correction and removal of metal clip artifacts in cone beam breast CT. Proc SPIE 9033:90332S

    Google Scholar 

  101. Santos J, Chaudhari AJ, Joshi AA et al (2014) Non-rigid registration of serial dedicated breast CT, longitudinal dedicated breast CT and PET/CT images using the diffeomorphic demons method. Phys Med 30:713–717

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Key R&D Program of China (No. 2017YFC0112600, 2017YFC0112601, 2017YFC0112602, 2017YFC0112603, 2017YFC0112604, 2017YFC0112605, 2017YFC0109300, 2017YFC0109301, 2017YFC0109302, 2017YFC0109303, 2017YFC0109304), National Natural Science Foundation of China (No. 81571671), Tianjin Science and Technology Major Project (No. 19ZXDBSY00080), and Key Project of Tianjin Medical Industry (No. 16KG130).

Funding

This study has received funding from National Key R&D Program of China (No. 2017YFC0112600, 2017YFC0112601, 2017YFC0112602, 2017YFC0112603, 2017YFC0112604, 2017YFC0112605, 2017YFC0109300, 2017YFC0109301, 2017YFC0109302, 2017YFC0109303, 2017YFC0109304), National Natural Science Foundation of China (No. 81571671), Tianjin Science and Technology Major Project (No. 19ZXDBSY00080), and Key Project of Tianjin Medical Industry (No. 16KG130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiang Ye.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Zhaoxiang Ye.

Conflict of interest

The authors of this manuscript declare relationships with Koning Corporation.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not required for this study because it is a Review article.

Ethical approval

Institutional Review Board approval was not required because it is a Review article.

Study subjects or cohorts overlap

Study subjects or cohorts have been previously reported, as this is a literature review.

Methodology

• retrospective

• review

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The citation order of the references 69 and 70 was incorrect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., O’Connell, A.M., Ma, Y. et al. Dedicated breast CT: state of the art—Part I. Historical evolution and technical aspects. Eur Radiol 32, 1579–1589 (2022). https://doi.org/10.1007/s00330-021-08179-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08179-z

Keywords

Navigation