Skip to main content

Advertisement

Log in

Radiomic analysis of HTR-DCE MR sequences improves diagnostic performance compared to BI-RADS analysis of breast MR lesions

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the diagnostic performance of radiomic analysis using high temporal resolution (HTR)-dynamic contrast enhancement (DCE) MR sequences compared to BI-RADS analysis to distinguish benign from malignant breast lesions.

Materials and methods

We retrospectively analyzed data from consecutive women who underwent breast MRI including HTR-DCE MR sequencing for abnormal enhancing lesions and who had subsequent pathological analysis at our tertiary center. Semi-quantitative enhancement parameters and textural features were extracted. Temporal change across each phase of textural features in HTR-DCE MR sequences was calculated and called “kinetic textural parameters.” Statistical analysis by LASSO logistic regression and cross validation was performed to build a model. The diagnostic performance of the radiomic model was compared to the results of BI-RADS MR score analysis.

Results

We included 117 women with a mean age of 54 years (28–88). Of the 174 lesions analyzed, 75 were benign and 99 malignant. Seven semi-quantitative enhancement parameters and 57 textural features were extracted. Regression analysis selected 15 significant variables in a radiomic model (called “malignant probability score”) which displayed an AUC = 0.876 (sensitivity = 0.98, specificity = 0.52, accuracy = 0.78). The performance of the malignant probability score to distinguish benign from malignant breast lesions (AUC = 0.876, 95%CI 0.825–0.925) was significantly better than that of BI-RADS analysis (AUC = 0.831, 95%CI 0.769–0.892). The radiomic model significantly reduced false positives (42%) with the same number of missed cancers (n = 2).

Conclusion

A radiomic model including kinetic textural features extracted from an HTR-DCE MR sequence improves diagnostic performance over BI-RADS analysis.

Key Points

• Radiomic analysis using HTR-DCE is of better diagnostic performance (AUC = 0.876) than conventional breast MRI reading with BI-RADS (AUC = 0.831) (p < 0.001).

• A radiomic malignant probability score under 19.5% gives a negative predictive value of 100% while a malignant probability score over 81% gives a positive predictive value of 100%.

• Kinetic textural features extracted from HTR-DCE-MRI have a major role to play in distinguishing benign from malignant breast lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

Area under the receiver operating characteristic curve

BI-RADS:

Breast Imaging Reporting and Data System

CCC:

Concordance correlation coefficient

CEROG:

Comité d’Ethique de la Recherche en Obstetrique et Gynecologie

DCE:

Dynamic contrast enhancement

DCIS:

Ductal carcinomas in situ

DISCO:

Differential Subsampling with Cartesian Ordering

EA:

Enhancement amplitude

EI:

Enhancement integral

GLCM:

Gray-level co-occurrence matrix

GLDM:

Gray-level dependence matrix

GLRLM:

Gray-level run length matrix

GLSZM:

Gray-level size zone matrix

HTR:

High temporal resolution

ICC:

Intra-class correlation coefficient

IDC:

Invasive ductal carcinoma

Imc1:

Informational measure of correlation 1

LASSO:

Least Absolute Shrinkage and Selection Operator

MR:

Magnetic resonance

MSI:

Maximum slope of increase

PACS:

Picture archiving and communication system

RLNN:

Run length non-uniformity normalized

Rmax:

Maximum of enhancement

RmaxTiming:

Timing of maximum of enhancement

ROC:

Receiver operating characteristic

ROI:

Region of interest

SPGR:

Spoiled gradient recalled

STD:

Standard deviation of signal intensity

THR:

Time of half rising

WIR:

Wash-in-rate

References

  1. Sardanelli F, Boetes C, Borisch B et al (2010) Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer 1990 46(8):1296–1316

  2. Mann RM, Cho N, Moy L (2019) Breast MRI: state of the art. Radiology. 292(3):520–536

    Article  PubMed  Google Scholar 

  3. Kuhl C (2007) The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology. 244(2):356–378

    Article  PubMed  Google Scholar 

  4. Mann RM, Mus RD, van Zelst J, Geppert C, Karssemeijer N, Platel B (2014) A novel approach to contrast-enhanced breast magnetic resonance imaging for screening: high-resolution ultrafast dynamic imaging. Invest Radiol 49(9):579–585

    Article  PubMed  Google Scholar 

  5. Milon A, Vande Perre S, Poujol J et al (2019) Abbreviated breast MRI combining FAST protocol and high temporal resolution (HTR) dynamic contrast enhanced (DCE) sequence. Eur J Radiol 117:199–208

    Article  PubMed  Google Scholar 

  6. Parekh VS, Jacobs MA (2017) Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 3:43

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rizzo S, Botta F, Raimondi S et al (2018) Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months. Eur Radiol 28(11):4849–4859

    Article  PubMed  Google Scholar 

  8. Wu G, Woodruff HC, Sanduleanu S et al (2020) Preoperative CT-based radiomics combined with intraoperative frozen section is predictive of invasive adenocarcinoma in pulmonary nodules: a multicenter study. Eur Radiol 30(5):2680–2691

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thomassin-Naggara I, Soualhi N, Balvay D, Darai E, Cuenod C-A (2017) Quantifying tumor vascular heterogeneity with DCE-MRI in complex adnexal masses: a preliminary study. J Magn Reason Imaging. https://doi.org/10.1002/jmri.25707

  10. Chang Y-C, Huang C-S, Liu Y-J, Chen J-H, Lu Y-S, Tseng W-YI (2004) Angiogenic response of locally advanced breast cancer to neoadjuvant chemotherapy evaluated with parametric histogram from dynamic contrast-enhanced MRI. Phys Med Biol 49(16):3593–3602

    Article  PubMed  Google Scholar 

  11. Ahmed A, Gibbs P, Pickles M, Turnbull L (2013) Texture analysis in assessment and prediction of chemotherapy response in breast cancer. J Magn Reason Imaging 38(1):89–101

    Article  Google Scholar 

  12. Ashraf A, Gaonkar B, Mies C et al (2015) Breast DCE-MRI kinetic heterogeneity tumor markers: preliminary associations with neoadjuvant chemotherapy response. Transl Oncol 8(3):154–162

    Article  PubMed  Google Scholar 

  13. Bhooshan N, Giger ML, Jansen SA, Li H, Lan L, Newstead GM (2010) Cancerous breast lesions on dynamic contrast-enhanced MR images: computerized characterization for image-based prognostic markers. Radiology. 254(3):680–690

    Article  PubMed  Google Scholar 

  14. Kim J-H, Ko ES, Lim Y et al (2017) Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes. Radiology. 282(3):665–675

    Article  PubMed  Google Scholar 

  15. Parikh J, Selmi M, Charles-Edwards G et al (2014) Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy. Radiology. 272(1):100–112

    Article  PubMed  Google Scholar 

  16. Thibault G, Tudorica A, Afzal A et al (2017) DCE-MRI texture features for early prediction of breast cancer therapy response. Tomography 3(1):23–32

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu J, Cao G, Sun X et al (2018) Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology. 288(1):26–35

    Article  PubMed  Google Scholar 

  18. Wu J, Gong G, Cui Y, Li R (2016) Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy. J Magn Reason Imaging 44(5):1107–1115

  19. Braman NM, Etesami M, Prasanna P et al (2017) Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res 19(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fan M, Li H, Wang S, Zheng B, Zhang J, Li L (2017) Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer. PLoS One 12(2):e0171683

    Article  PubMed  Google Scholar 

  21. Fan M, Cheng H, Zhang P et al (2018) DCE-MRI texture analysis with tumor subregion partitioning for predicting Ki-67 status of estrogen receptor-positive breast cancers. J Magn Reason Imaging 48(1):237–247

    Article  Google Scholar 

  22. Li H, Zhu Y, Burnside ES et al (2016) MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology. 281(2):382–391

    Article  PubMed  Google Scholar 

  23. Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology. 290(2):290–297

    Article  PubMed  Google Scholar 

  24. Fan M, Zhang P, Wang Y et al (2019) Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer. Eur Radiol 29(8):4456–4467

    Article  PubMed  Google Scholar 

  25. Lo Gullo R, Daimiel I, Rossi Saccarelli C et al (2020) Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in BRCA mutation carriers. Eur Radiol. https://doi.org/10.1007/s00330-020-06991-7

  26. D’Amico NC, Grossi E, Valbusa G et al (2020) A machine learning approach for differentiating malignant from benign enhancing foci on breast MRI. Eur Radiol Exp 4(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Saranathan M, Rettmann DW, Hargreaves BA, Clarke SE, Vasanawala SS (2012) DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J Magn Reson Imaging 35(6):1484–1492

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morris EA, Comstock CE, Lee CH (2013) ACR BI-RADS Atlas - Breast Imaging Reporting and Data System Atlas. American College of Radiology, Reston, VA

    Google Scholar 

  29. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 44(3):837–845

    Article  CAS  PubMed  Google Scholar 

  30. Thomassin-Naggara I, Bazot M, Daraï E, Callard P, Thomassin J, Cuenod CA (2008) Epithelial ovarian tumors: value of dynamic contrast-enhanced MR imaging and correlation with tumor angiogenesis. Radiology. 248(1):148–159

    Article  PubMed  Google Scholar 

  31. Thomassin-Naggara I, Daraï E, Cuenod CA, Rouzier R, Callard P, Bazot M (2008) Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. J Magn Reson Imaging 28(1):111–120

    Article  PubMed  Google Scholar 

  32. Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  PubMed  Google Scholar 

  33. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zwanenburg A, Leger S, Vallières M, Löck S, Initiative for the IBS (2016) Image biomarker standardisation initiative. ArXiv161207003 Cs. [cited 2018 Mar 25]; Available from: http://arxiv.org/abs/1612.07003. Accessed 25 March 2018 

  35. Duron L, Balvay D, Vande Perre S et al (2019) Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS One 14(3):e0213459

    Article  CAS  PubMed  Google Scholar 

  36. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Internet]. 2013. Available from: http://www.R-project.org/. Accessed 25 Feb 2019

  37. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B Methodol 58(1):267–288

    Google Scholar 

  38. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762

  39. Liang C, Cheng Z, Huang Y et al (2018) An MRI-based radiomics classifier for preoperative prediction of Ki-67 status in breast cancer. Acad Radiol 25(9):1111–1117

    Article  PubMed  Google Scholar 

  40. Harvey SC, Di Carlo PA, Lee B, Obadina E, Sippo D, Mullen L (2016) An abbreviated protocol for high-risk screening breast MRI saves time and resources. J Am Coll Radiol 13(11S):R74–R80

  41. Kuhl CK (2018) Abbreviated breast MRI for screening women with dense breast: the EA1141 trial. Br J Radiol 91(1090):20170441

    Article  PubMed  Google Scholar 

  42. Cuenod CA, Balvay D (2013) Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 94(12):1187–1204

    Article  CAS  PubMed  Google Scholar 

  43. Pradel C, Siauve N, Bruneteau G et al (2003) Reduced capillary perfusion and permeability in human tumour xenografts treated with the VEGF signalling inhibitor ZD4190: an in vivo assessment using dynamic MR imaging and macromolecular contrast media. Magn Reson Imaging 21(8):845–851

    Article  CAS  PubMed  Google Scholar 

  44. Folkman J. Tumor angiogenesis. In: Klein G, Weinhouse S, editors. Advances in cancer research. Academic Press; 1985 [cited 2018 Jun 6]. p. 175–203. Available from: http://www.sciencedirect.com/science/article/pii/S0065230X0860946X. Accessed 06 June 2018

  45. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9(6):713–725

    Article  CAS  PubMed  Google Scholar 

  46. Fukumura D, Jain RK (2008) Imaging angiogenesis and the microenvironment. APMIS 116(7–8):695–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  CAS  PubMed  Google Scholar 

  48. Reig B, Heacock L, Geras KJ, Moy L (2019) Machine learning in breast MRI. J Magn Reason Imaging. https://doi.org/10.1002/jmri.26852

  49. Agner SC, Soman S, Libfeld E et al (2011) Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J Digit Imaging 24(3):446–463

    Article  PubMed  Google Scholar 

  50. Milenković J, Dalmış MU, Žgajnar J, Platel B (2017) Textural analysis of early-phase spatiotemporal changes in contrast enhancement of breast lesions imaged with an ultrafast DCE-MRI protocol. Med Phys 44(9):4652–4664

    Article  PubMed  Google Scholar 

  51. Zhou X, Gao F, Duan S et al (2020) Radiomic features of Pk-DCE MRI parameters based on the extensive Tofts model in application of breast cancer. Phys Eng Sci Med 43(2):517–524

  52. Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS (2018) Rapid review: radiomics and breast cancer. Breast Cancer Res Treat 169(2):217–229

    Article  PubMed  Google Scholar 

  53. Whitney HM, Li H, Ji Y, Liu P, Giger ML (2020) Harmonization of radiomic features of breast lesions across international DCE-MRI datasets. J Med Imaging (Bellingham) 7(1):012707

  54. Rotili A, Trimboli RM, Penco S et al (2020) Double reading of diffusion-weighted magnetic resonance imaging for breast cancer detection. Breast Cancer Res Treat 180(1):111–120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Nicolas Mion Eng. and Julie Poujol, PhD.

Funding

Saskia Vande Perre has received a Young Award from the Société Francaise de Radiologie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Thomassin-Naggara.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Isabelle Thomassin-Naggara.

Conflict of interest

Saskia Vande Perre, Loic Duron, Audrey Milon, Asma Bekhouche, Daniel Balvay, and François H. Cornelis: no relationships with any companies, whose products or services may be related to the subject matter of the article.

Laure Fournier: Receipt of grants/research supports (related with the subject matter of the article) with Philips, ArianaPharma, Evolucare, Invectys. Receipt of honoraria or consultation fees (not related with the subject) with Novartis, Janssen, and Sanofi. Speaker fees (not related with the subject) with Novartis, Bayer, Janssen, Sanofi, Pfizer, GE Healthcare.

Isabelle Thomassin - Naggara: Remunerated lecture with GE, Hologic, Canon, Guerbet, and one participation to board expert meeting (Siemens).

Statistics and biometry

Nicolas Mion, engineer, kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

CEROG 2018-GYN-0803.

Study subjects or cohorts overlap

One study has been previously published on the same cohort:

Milon, A. et al Abbreviated breast MRI combining FAST protocol and high temporal resolution (HTR) dynamic contrast enhanced (DCE) sequence. European Journal of Radiology 117, 199–208 (2019).

Methodology

• retrospective

• diagnostic study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perre, S.V., Duron, L., Milon, A. et al. Radiomic analysis of HTR-DCE MR sequences improves diagnostic performance compared to BI-RADS analysis of breast MR lesions. Eur Radiol 31, 4848–4859 (2021). https://doi.org/10.1007/s00330-020-07519-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-07519-9

Keywords

Navigation