Skip to main content

Advertisement

Log in

Identification of epidermal growth factor receptor mutations in pulmonary adenocarcinoma using dual-energy spectral computed tomography

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To explore the role of dual-energy spectral computed tomography (DESCT) quantitative characteristics for the identification of epidermal growth factor receptor (EGFR) mutation status in a cohort of East Asian patients with pulmonary adenocarcinoma.

Materials and methods

Patients with lung adenocarcinoma who underwent both DESCT chest examination and EGFR test were retrospectively selected from our institution’s database. The DESCT visual morphological features and quantitative parameters, including the CT number at 70 keV, normalized iodine concentration (NIC), normalized water concentration, and slopes of the spectral attenuation curves (slope λ HU [Hounsfield unit]), were evaluated or calculated. The patients were divided into two groups: the EGFR mutation group and EGFR wild-type group. Statistical analyses were performed to identify the DESCT quantitative parameters for diagnosis of EGFR mutation status.

Results

EGFR mutations were detected in 66 (55.0%) of the 120 enrolled patients. The univariate analysis revealed that sex, smoking history, CT texture, NIC, and slope λ HU were significantly associated with EGFR mutation status (p = 0.037, 0.001, 0.047, 0.010, and 0.018, respectively). The multivariate logistic analysis revealed that smoking history (odds ratio [OR] = 3.23, p = 0.005) and NIC (OR = 58.026, p = 0.049) were the two significant predictive factors associated with EGFR mutations. Based on this analysis, the smoking history and NIC were combined to determine the predictive value for EGFR mutations with the area under the curve of 0.702.

Conclusions

NIC may be a potential quantitative DESCT parameter for predicting EGFR mutations in patients with pulmonary adenocarcinoma.

Key Points

• DESCT can provide multiple quantitative image parameters compared to conventional CT.

• Identification of the radio-genomic relation between DESCT and EGFR status can help to define molecular subcategories of lung adenocarcinoma, which is valuable for personalized clinical targeted therapy.

• NIC may be a potential DESCT quantitative parameter for predicting EGFR mutations in pulmonary adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALK:

Anaplastic lymphoma kinase

DESCT:

Dual-energy spectral computed tomography

EGFR:

Epidermal growth factor receptor

GGO:

Ground-glass opacity

GSI:

Gemstone spectral imaging

KRAS:

Kirsten rat sarcoma viral oncogene homolog

NIC:

Normalized iodine concentration

NWC:

Normalized water concentration

PSN:

Part-solid nodule

Slope λ HU:

The slope of the spectral Hounsfield unit curve

SSN:

Sub-solid nodule

References

  1. Zhang L, Li M, Wu N, Chen Y (2015) Time trends in epidemiologic characteristics and imaging features of lung adenocarcinoma: a population study of 21,113 cases in China. PLoS One 10:e0136727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Auerbach O, Garfinkel L (1991) The changing pattern of lung carcinoma. Cancer 68:1973–1977

    Article  CAS  PubMed  Google Scholar 

  3. Travis WD (2009) Reporting lung cancer pathology specimens. Impact of the anticipated 7th edition TNM classification based on recommendations of the IASLC staging committee. Histopathology 54:3–11

    Article  PubMed  Google Scholar 

  4. Zhou C, Wu YL, Chen G et al (2015) Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802). Ann Oncol 26:1877–1883

    Article  CAS  PubMed  Google Scholar 

  5. Maemondo M, Inoue A, Kobayashi K et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388

    Article  CAS  PubMed  Google Scholar 

  6. Rosell R, Moran T, Queralt C et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361:958–967

    Article  CAS  PubMed  Google Scholar 

  7. Dearden S, Stevens J, Wu YL, Blowers D (2013) Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol 24:2371–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goo JM, Park CM, Lee HJ (2011) Ground-glass nodules on chest CT as imaging biomarkers in the management of lung adenocarcinoma. AJR Am J Roentgenol 196:533–543

    Article  PubMed  Google Scholar 

  9. Liu Y, Kim J, Qu F et al (2016) CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma. Radiology 280:271–280

    Article  PubMed  Google Scholar 

  10. Yang Y, Yang Y, Zhou X et al (2015) EGFR L858R mutation is associated with lung adenocarcinoma patients with dominant ground-glass opacity. Lung Cancer 87:272–277

    Article  PubMed  Google Scholar 

  11. Hong SJ, Kim TJ, Choi YW, Park JS, Chung JH, Lee KW (2016) Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: imaging features and histological subtypes. Eur Radiol 26:3660–3668

    Article  PubMed  Google Scholar 

  12. Kim TJ, Lee CT, Jheon SH, Park JS, Chung JH (2016) Radiologic characteristics of surgically resected non-small cell lung cancer with ALK rearrangement or EGFR mutations. Ann Thorac Surg 101:473–480

    Article  PubMed  Google Scholar 

  13. Cheng Z, Shan F, Yang Y, Shi Y, Zhang Z (2017) CT characteristics of non-small cell lung cancer with epidermal growth factor receptor mutation: a systematic review and meta-analysis. BMC Med Imaging 17:5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goo HW, Goo JM (2017) Dual-energy CT: new horizon in medical imaging. Korean J Radiol 18:555–569

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  16. Simons D, Kachelriess M, Schlemmer HP (2014) Recent developments of dual-energy CT in oncology. Eur Radiol 24:930–939

    Article  PubMed  Google Scholar 

  17. De Cecco CN, Darnell A, Rengo M et al (2012) Dual-energy CT: oncologic applications. AJR Am J Roentgenol 199:S98–S105

    Article  PubMed  Google Scholar 

  18. González-Pérez V, Arana E, Barrios M et al (2016) Differentiation of benign and malignant lung lesions: dual-energy computed tomography findings. Eur J Radiol 85:1765–1772

    Article  PubMed  Google Scholar 

  19. Wang G, Zhang C, Li M, Deng K, Li W (2014) Preliminary application of high-definition computed tomographic gemstone spectral imaging in lung cancer. J Comput Assist Tomogr 38:77–81

    Article  PubMed  Google Scholar 

  20. Sudarski S, Hagelstein C, Weis M, Schoenberg SO, Apfaltrer P (2015) Dual-energy snap-shot perfusion CT in suspect pulmonary nodules and masses and for lung cancer staging. Eur J Radiol 84:2393–2400

    Article  PubMed  Google Scholar 

  21. Hou WS, Wu HW, Yin Y, Cheng JJ, Zhang Q, Xu JR (2015) Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging. Acad Radiol 22:337–344

    Article  PubMed  Google Scholar 

  22. Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JA, Kalra MK (2016) Dual-energy CT: spectrum of thoracic abnormalities. Radiographics 36:38–52

    Article  PubMed  Google Scholar 

  23. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  24. Remy-Jardin M, Faivre JB, Pontana F, Molinari F, Tacelli N, Remy J (2014) Thoracic applications of dual energy. Semin Respir Crit Care Med 35:64–73

    Article  PubMed  Google Scholar 

  25. Ohana M, Jeung MY, Labani A, El Ghannudi S, Roy C (2014) Thoracic dual energy CT: acquisition protocols, current applications and future developments. Diagn Interv Imaging 95:1017–1026

    Article  CAS  PubMed  Google Scholar 

  26. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246:697–722

    Article  PubMed  Google Scholar 

  27. Godoy MC, Naidich DP (2009) Subsolid pulmonary nodules and the spectrum of peripheral adenocarcinomas of the lung: recommended interim guidelines for assessment and management. Radiology 253:606–622

    Article  PubMed  Google Scholar 

  28. Raad RA, Suh J, Harari S, Naidich DP, Shiau M, Ko JP (2014) Nodule characterization: subsolid nodules. Radiol Clin North Am 52:47–67

    Article  PubMed  Google Scholar 

  29. Truong MT, Ko JP, Rossi SE et al (2014) Update in the evaluation of the solitary pulmonary nodule. Radiographics 34:1658–1679

    Article  PubMed  Google Scholar 

  30. Wang L, Liu B, Wu XW et al (2012) Correlation between CT attenuation value and iodine concentration in vitro: discrepancy between gemstone spectral imaging on single-source dual-energy CT and traditional polychromatic X-ray imaging. J Med Imaging Radiat Oncol 56:379–383

    Article  PubMed  Google Scholar 

  31. Knöss N, Hoffmann B, Krauss B, Heller M, Biederer J (2011) Dual energy computed tomography of lung nodules: differentiation of iodine and calcium in artificial pulmonary nodules in vitro. Eur J Radiol 80:e516–e519

    Article  PubMed  Google Scholar 

  32. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17:71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsuda I, Akahane M, Sato J et al (2012) Precision of the measurement of CT numbers: comparison of dual-energy CT spectral imaging with fast kVp switching and conventional CT with phantoms. Jpn J Radiol 30:34–39

    Article  PubMed  Google Scholar 

  35. Patino M, Prochowski A, Agrawal MD et al (2016) Material separation using dual-energy CT: current and emerging applications. Radiographics 36:1087–1105

    Article  PubMed  Google Scholar 

  36. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee HJ, Kim YT, Kang CH et al (2013) Epidermal growth factor receptor mutation in lung adenocarcinomas: relationship with CT characteristics and histologic subtypes. Radiology 268:254–264

    Article  PubMed  Google Scholar 

  38. Aoki M, Takai Y, Narita Y et al (2014) Correlation between tumor size and blood volume in lung tumors: a prospective study on dual-energy gemstone spectral CT imaging. J Radiat Res 55:917–923

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kawai T, Shibamoto Y, Hara M, Arakawa T, Nagai K, Ohashi K (2011) Can dual-energy CT evaluate contrast enhancement of ground-glass attenuation? Phantom and preliminary clinical studies. Acad Radiol 18:682–689

    Article  PubMed  Google Scholar 

  40. Ascenti G, Mileto A, Krauss B et al (2013) Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 23:2288–2295

    Article  PubMed  Google Scholar 

Download references

Funding

This study has received funding by the National Natural Science Foundation of China (Grant No. 81601494) and the PUMC Youth Fund/Fundamental Research Funds for the Central Universities (Grant No. 3332016030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wu.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Ning Wu.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

Ni Li kindly provided statistical advice for this manuscript.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• observational

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, L., Tang, W. et al. Identification of epidermal growth factor receptor mutations in pulmonary adenocarcinoma using dual-energy spectral computed tomography. Eur Radiol 29, 2989–2997 (2019). https://doi.org/10.1007/s00330-018-5756-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5756-9

Keywords

Navigation